<u>ADIOS</u>

ERWEITERTE BEDIENUNGSANLEITUNG VERSION: 28.09.2022

0. Einleitung:

Das vorliegende Benutzermanual zum Simulationsprogramm ADIOS besteht im wesentlichen aus einer Ein- und Ausgabedatenbeschreibung mit einem physikalischen Anhang. Es soll dem Benutzer ermöglichen, erste Einblicke in die Möglichkeiten der Bauelementesimulation nach dem Modell, welches wir im Folgenden als ADIOS-Modell bezeichnen, zu gewinnen. Es soll nicht das Programm in all seinen Programmierfeinheiten und Lösungsalgorithmen erläutern. Ziel dieses Manuals ist im Wesentlichen nur die Vielfalt der Simulationsmöglichkeiten, die das Programm ADIOS bietet, darzustellen. Auch erleichtert dieses Manual den Einstieg in das Programm ADIOS wesentlich und ermöglicht es dem Benutzer erste Rechenläufe schon vor einer vollständigen Programmanalyse oder vollständiges Durchlesen dieses Manuals durchzuführen.

Die FORTAN Quellcode in FTN77 ist angepasst am bzw. optimiert für den Open Watcom Compiler, Version 1.9. Dieser Compiler kann heruntergeladen werden von: <u>https://www.mourick.com/Downloads/open-watcom-f77-win32-1.9.exe</u>. Für die grafische Ausgabe wird die Bibliothek **diswfl_d.lib** für Open Watcom von <u>https://www.dislin.de/windows.html</u> be-nötigt.

Calta

In der FORTAN Quellcode sind folgende ASCI-Zeichen zulässig, Nr. 32 bis 126:

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

!"#\$%&`()`+,-./0123456789:;<=>?@[\]^_{|}~

Die FORTAN Quellcode muss in ANSI abgespeichert werden.

1. Inhaltsverzeichnis:

0. Finlaiturau	Selle
0. Einieitung:	1
Annehetischer Index der Ein und Ausgeheneremeter	I
2. Alphabelischer Index der Ein- und Ausgabeparameter:	
3. Der Standardeingabedatensatz für ADIOS: Adios-input.dat:	
3.1. Programmkontrolle:	
3.2. Beschreibung der Eingabekonventionen:	10
4. Beschreibung der Darstellungsstruktur der Ein- und Ausgabedaten:	12
5. Die Beschreibung der Eingabedaten:	13
5.1. Hinweise zu den Eingabemöglichkeiten der Rekombinationszentren:	13
5.2. Parameter für die Berechnung der Massenwirkungskonstanten des Donators:	13
5.3. Parameter für die Rekombinationskoeffizienten der Donatoren:	13
5.4. Parameter für die Berechnung der Massenwirkungskonstanten des Akzeptors:	14
5.5. Parameter für die Rekombinationskoeffizienten der Akzeptoren:	14
5.6. Parameter für die Rekombinationskoeffizienten des Donatorniveaus der Rekombinationszentren:	15
5.7. Parameter für die Rekombinationskoeffizienten des Akzeptorniveaus der Rekombinationszentren:	16
5.8. Parameter für das Ortsdiskretisierungsgitter:	17
Das Diskretisierungsgitter muss manuell eingegeben werden	17
5.9. Parameter für die Beweglichkeit der Elektronen bei hohen elektrischen Feldstärken:	18
5.10. Parameter für die Beweglichkeit der Löcher bei hohen elektrischen Feldstärken:	
5.11. Parameter für die Beweglichkeit der Elektronen bei niedrigen elektrischen Feldstärken im Modell der B	ewealich-
keit von N. D. Arora	
Formel für die Eingabeparameter, analog zu (A 13 1) [.]	19
5 12 Parameter für die Beweglichkeit der Löcher bei niedrigen elektrischen Feldstärken im Modell der Bewe	alichkeit
von N D Arora	20
Formel für die Eingabenarameter, analog zu (A 13 2)	20
5 13. Parameter für die Beweglichkeitsgleichung nach Schlangenotto:	
5 11. Parameter für die Elektronen bei der Augerrekombination:	

5.15. Parameter für die Löcher bei der Augerrekombination:	23
5.16. Parameter der Stoßionisation für Elektronen:	24
5.17. Parameter der Stoßionisation für Löcher:	25
5.18. Mögliche Varianten bei der Festlegung der Dotierungsprofile für Akzeptoren und Donatoren:	25
5.19. Parameter für die Wahl der Profiltypen bei den als Option vorgesehenen Profilen:	26
5.20. Parameter für den Konzentrationsverlauf der n-Profile mit fest vorgegebener Funktion:	
5.21. Parameter für den Konzentrationsverlauf der p-Profile: mit fest vorgegebener Funktion:	.29
5.22. Parameter für die Eingabe des frei wählbaren Profils:	.31
Optionen bei der Eingabe des frei wählbaren Profils	
5.23. Parameter für das frei wählbare Profil der Donatoren:	31
5.24. Parameter für das frei wählbare Profil der Akzeptoren:	
5.25. Parameter für die Eingabe des Profils der Rekombinationszentren:	33
Optionen bei der Eingabe des Profils der Rekombinationszentren.	33
5.26. Parameter für das Profil der Rekombinationszentren:	33
5.26a. Bedeutung der Eingabe für HE <lium></lium>	35
5.26b. PARAMETER für Elektronen- und Helium-Bestrahlung:	
5.26c, E(90K) A-Zentrum AKZEPTOR-Niveau	
5.26d. E(230K) VV-Zentrum Multivacancy AKZEPTOR-Niveau	
5.26e, H(195K) K-Zentrum DONOR-Niveau	39
5.26f. PARAMETER für PLATIN	40
PT-DONOR-Niveau	40
PT-AKZEPTOR-Niveau	40
5.27. Die Bauelementefläche:	
5.28. Die aktuelle Feldgröße:	. 41
5.29. Fehlerarenze für die Zeitschrittweitensteuerung:	
5.30. Parameter für die Wärmewiderstände:	
5.31. Das Bandgapharrowing	42
Parameter für die Temperaturabhängigkeit des Bandgapharrowing.	
5.32. Die Oberflächenrekombination:	43
5.33. Parameter für die Oberflächenrekombination am linken Metall-Silizium-Übergang:	43
5.34. Parameter für die Oberflächenrekombination am rechten Metall-Silizium-Übergang:	
5.35. Parameter für die Randbedingungen des elektrischen Feldes:	44
5.36. Fit-Parameter für die Shocklev-Read-Hall-Gleichung (A.7.1): (Scharfetter-Relation).	
5.37. Parameter für die Eingabe der Lebensdauerprofile:	45
Optionen bei der Eingabe der Lebensdauerprofile	46
5.38. Parameter für das Lebensdauerprofil der Elektronen:	46
5.39. Parameter für das Lebensdauerprofil der Löcher:	46
5.40. Parameter für die Wahl der Randmetalle:	47
Selektoren für die Wahl der Randmetalle	47
5.41. Parameter für das Ortsdiskretisierungsgitter der Randmetalle:	48
Das Diskretisierungsgitter für die Randmetalle	48
5.42. Die maximal zulässige CPU-Zeit:	49
5.43. Parameter zur Wahl der Simulationsmodelle:	49
5.44. Parameter bei der Wahl von SIMTYP=3 als Simulationsmodell:	50
5.45. Parameter für die Beschaltung des Bauelementes:	51
5.45a. Parameter für eine nicht konstante Induktivität (nur beim Abschaltvorgang mit SIMTYP = 0)	52
Optionen bei der Eingabe der Induktivität	53
Parameter für den Verlauf der Induktivität	53
5.45b. Parameter für eine erzwungene Oszillation	53
5.46. Parameter für den nicht idealen Schalter der Beschaltung: (nur beim Abschaltvorgang mit SIMTYP = 0)	55
Parameter für die Nachbildung eines nicht idealen Schalters	55
Optionen bei der Eingabe des Schalterwiderstandes	55
Parameter für den Verlauf des Schalterwiderstandes	55
Parameter für das Schalttransistormodell mit Exponentialfunktionen	57
5.47. Parameter für den Strom:	59
5.48. Parameter für die (Anfangs-)Temperatur:	59
5.49. Parameter für das Zeitausgabegitter der 3DPLOTs:	59
Das Zeitausgabegitter für 3DPLOTs.	59
5.50. Die Zeitkonstante ZK und die Zeitschrittweitenbegrenzungen:	60
5.51. Logische Parameter zur Programmsteuerung:	60
5.52. Logische Parameter zur Steuerung der Simulationsmodelle:	62
5.53. Parameter zur Steuerung der Ausgabe bei den 2DPLOTs:	63
5.54. Parameter zur Festlegung des Gate/Basis-Anschlusses, des Basiswiderstandes und des Basisstromes:	64
Parameter für den Gate- bzw. Basis-Stromverlauf.	64
Optionen dei der Eingade des Stromverlaufes	64

	Parameter für den Verlauf des Stromes	64
	5.55 Darameter zur Eetlegung Andenkurzschlusses:	65
6	0.00. Falameter zur Festegung Anouerinurzschlusses.	05
0.	Die Beschleibung der Ausgabedateri.	00
	6.1. Die Ausgabe von globalen Daten am Bildschirm:	00
	6.2. Die Ausgabe von lokalen Daten am Bildschirm:	68
	6.3. Datenausgabe auf dem Schnelldrucker:	69
7.	Die Ausgabe von lokalen Daten am Bildschirm:	74
	7.1. Dialogbetrieb:	74
8.	Die Formate der Ausgabedatensätze:	76
		76
	Fortran-Anweisungen:	76
		70
	6.2. DATEX.DAT	70
	Fortran-Anweisungen:	76
9.	Tabellen mit Parameter für die Wärmeleitung:	78
	ALUMINIUM	78
	CHROM	78
	KUPFER	
	GERMANIUM	79
		70
		70
		79
	MOLYBDAEN	79
	NICKEL	79
	PLATIN	79
	SILIZIUM	80
	SILBER	80
	WOLERAM	80
		00
40		00
10	b. Bedeutung von TYP In UP-SUBSTP.	81
11	. Anhang A: Das mathematische Halbleitermodell, Stand: 01.12.2012	82
	11.A.1 Einleitung zum Halbleitermodell	82
	11. A.2 Die Basisgleichungen	84
	11.A.3 Die Fermistatistik	85
		00
	11 A 4 Die Verendund des Bandanstandes	00
	11.A.4 Die Verengung des Bandabstandes 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzentor-Niveaus im thermischen Gleichgewicht	00
	 11.A.4 Die Verengung des Bandabstandes 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Messenwirkungsgesetze. 	90
	 11.A.4 Die Verengung des Bandabstandes	90 92
	 11.A.4 Die Verengung des Bandabstandes	90 92 94
	 11.A.4 Die Verengung des Bandabstandes	90 92 94 99
	 11.A.4 Die Verengung des Bandabstandes	90 92 94 94 99 104
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination 	90 92 94 99 104 .106
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 	90 92 94 99 104 .106 .107
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation 	90 92 94 99 104 .106 .107 110
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation. 11.A.13 Die Beweglichkeit von Löchern und Elektropen. 	90 92 94 99 104 .106 .107 .110
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation. 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Reweglichkeit von Löchern und Elektronen. 	90 92 94 99 104 .106 .107 .110 .111
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation. 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen bei hohen elektrischen Feldstärken. 	90 92 94 99 104 .106 .107 .110 .111 114
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation. 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen bei hohen elektrischen Feldstärken. 11.A.15 Das Dotierungsprofil einer Diode. 	90 92 94 99 104 .106 .107 .110 .111 114 114
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation. 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen bei hohen elektrischen Feldstärken. 11.A.15 Das Dotierungsprofil einer Diode. 11.A.16 Die Rekombinationsströme in den hoch dotierten Randgebieten. 	90 92 94 99 104 .106 .107 .110 .111 114 116 118
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination	90 92 94 99 104 .106 .107 .110 .111 114 114 118 122
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht. 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation. 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen bei hohen elektrischen Feldstärken. 11.A.15 Das Dotierungsprofil einer Diode. 11.A.17 Die Spannung über eine Diode. 11.A.18 Die Wärmeleitung. 	90 92 94 99 104 .106 .107 .110 .111 114 114 118 122 122
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht. 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation. 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen bei hohen elektrischen Feldstärken. 11.A.15 Das Dotierungsprofil einer Diode. 11.A.17 Die Spannung über eine Diode. 11.A.18 Die Wärmeleitung. 11.A.19 Die Beschaltung einer Diode. 	90 92 94 99 104 .106 .107 .110 .111 114 114 116 118 122 122 127
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht. 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation. 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen bei hohen elektrischen Feldstärken. 11.A.15 Das Dotierungsprofil einer Diode. 11.A.17 Die Spannung über eine Diode. 11.A.18 Die Wärmeleitung. 11.A.19 Die Beschaltung einer Diode. 11.A.19 Die Beschaltung einer Diode. 11.A.20 Die Ortsdiskretisjerung und die x-Ableitungen 	90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .127 .130
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination	90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .122 .127 130
	 11.A.4 Die Verengung des Bandabstandes	90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .122 .127 .130 133
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveaus im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation. 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen. 11.A.15 Das Dotierungsprofil einer Diode. 11.A.16 Die Rekombinationsströme in den hoch dotierten Randgebieten. 11.A.17 Die Spannung über eine Diode. 11.A.18 Die Wärmeleitung. 11.A.19 Die Beschaltung einer Diode. 11.A.20 Die Ortsdiskretisierung und die x-Ableitungen. 11.A.20 Die Augerrekonung nach dem Scharfetter-Gummel-Algorithmus. 11.A.22 Die Randbedingungen. 	90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .122 .127 .130 133 133
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation. 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen bei hohen elektrischen Feldstärken. 11.A.15 Das Dotierungsprofil einer Diode. 11.A.16 Die Rekombinationsströme in den hoch dotierten Randgebieten. 11.A.17 Die Spannung über eine Diode. 11.A.18 Die Wärmeleitung. 11.A.20 Die Ortsdiskretisierung und die x-Ableitungen. 11.A.21 Die Stromberechnung nach dem Scharfetter-Gummel-Algorithmus. 11.A.23 Der Lösungsalgorithmus. 	90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .122 .127 .130 133 .135 135
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation. 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen bei hohen elektrischen Feldstärken. 11.A.15 Das Dotierungsprofil einer Diode. 11.A.16 Die Rekombinationsströme in den hoch dotierten Randgebieten. 11.A.17 Die Spannung über eine Diode. 11.A.18 Die Wärmeleitung. 11.A.20 Die Ortsdiskretisierung und die x-Ableitungen. 11.A.20 Die Ortsdiskretisierung und die x-Ableitungen. 11.A.21 Die Stomberechnung nach dem Scharfetter-Gummel-Algorithmus. 11.A.22 Die Randbedingungen. 11.A.24 Bezeichnungen und Symbole. 	90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .122 .127 .130 133 .135 .135 .138
	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen bei hohen elektrischen Feldstärken. 11.A.15 Das Dotierungsprofil einer Diode. 11.A.16 Die Rekombinationsströme in den hoch dotierten Randgebieten. 11.A.19 Die Beschaltung einer Diode. 11.A.20 Die Ortsdiskretisierung und die x-Ableitungen. 11.A.21 Die Stromberechnung nach dem Scharfetter-Gummel-Algorithmus. 11.A.23 Der Lösungsalgorithmus. 11.A.24 Bezeichnungen und Symbole. 11.A.25 Literaturverzeichnis. 	90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .122 .127 .130 133 .135 .135 .138 .141
12	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation. 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen bei hohen elektrischen Feldstärken. 11.A.15 Das Dotierungsprofil einer Diode. 11.A.16 Die Rekombinationsströme in den hoch dotierten Randgebieten. 11.A.17 Die Spannung über eine Diode. 11.A.20 Die Ortsdiskretisierung und die x-Ableitungen. 11.A.21 Die Stromberechnung nach dem Scharfetter-Gummel-Algorithmus. 11.A.23 Der Lösungsalgorithmus. 11.A.25 Literaturverzeichnis. Anhang B. 	90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .122 .127 .130 133 .135 .135 .135 .138 .141 148
12	 11.A.4 Die Verengung des Bandapstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveaus im verbotenen Band	90 90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .122 .127 .130 133 .135 .135 .135 .138 .141 .148 148
12	 11.A.5 Die Verengung des Bandabstandes	90 90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .122 .127 .130 133 .135 .135 .135 .138 .141 .148 148
12	 11.A.5 Die Verengung des Bandabstandes	90 90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .122 .127 .130 133 .135 .135 .135 .138 .141 .148 .148 .150 .152
12	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht. 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombination über Rekombination. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation 11.A.12 Die Stoßionisation. 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen bei hohen elektrischen Feldstärken. 11.A.15 Das Dotierungsprofil einer Diode. 11.A.16 Die Rekombinationsströme in den hoch dotierten Randgebieten. 11.A.17 Die Spannung über eine Diode. 11.A.18 Die Wärmeleitung. 11.A.20 Die Ortsdiskretisierung und die x-Ableitungen. 11.A.21 Die Stromberechnung nach dem Scharfetter-Gummel-Algorithmus. 11.A.22 Die Randbedingungen. 11.A.23 Der Lösungsalgorithmus. 11.A.24 Bezeichnungen und Symbole. 11.A.25 Literaturverzeichnis. Anhang B. 21.B.1. Orientierungen bei der Plotausgabe in Plot2d und Plot3d: 22.B.2. Verdeckte Linien in 3D-PLOT, mathematisches Verfahren. 22.B.4. Parofil. Reiseich. 	90 90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .122 .127 .130 133 .135 .135 .135 .138 .141 .148 .148 .150 152
12	 11.A.4 Die Verengung des Bandabstandes. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band	90 90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .122 .127 .130 133 .135 .135 .135 .138 .141 .148 150 152 152
12	 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht. 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Augerrekombination. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation. 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen bei hohen elektrischen Feldstärken. 11.A.15 Das Dotierungsprofil einer Diode. 11.A.16 Die Rekombinationsströme in den hoch dotierten Randgebieten. 11.A.17 Die Spannung über eine Diode. 11.A.18 Die Wärmeleitung. 11.A.19 Die Beschaltung einer Diode. 11.A.20 Die Ortsdiskretisierung und die x-Ableitungen. 11.A.21 Die Stromberechnung nach dem Scharfetter-Gummel-Algorithmus. 11.A.22 Die Randbedingungen. 11.A.23 Der Lösungsalgorithmus. 11.A.24 Bezeichnungen und Symbole. 11.A.24 Bezeichnungen bei der Plotausgabe in Plot2d und Plot3d: 12.B.1. Orientierungen bei der Plotausgabe in Plot2d und Plot3d: 12.B.2. Verdeckte Linien in 3D-PLOT, mathematisches Verfahren. 12.B.3. Zeitableitung, Prediktorberechnung, Vektordiagramme - komplexe Signale: 12.B.4. pr-Profil, Beispiel, n+-Profil, Beispiel. 12.B.5. Parallelwiderstände und Gatestrom, Definition. 	90 90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .122 .127 .130 133 .135 .135 .135 .135 .138 .141 .148 .150 152 .153 153
12	 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht. 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation. 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen bei hohen elektrischen Feldstärken. 11.A.15 Das Dotierungsprofil einer Diode. 11.A.16 Die Rekombinationströme in den hoch dotierten Randgebieten. 11.A.17 Die Spannung über eine Diode. 11.A.18 Die Warmeleitung. 11.A.20 Die Ortsdiskretisierung und die x-Ableitungen. 11.A.21 Die Stromberechnung nach dem Scharfetter-Gummel-Algorithmus. 11.A.22 Die Randbedingungen. 11.A.24 Bezeichnungen und Symbole. 11.A.25 Literaturverzeichnis. Anhang B 22.B.1. Orientierungen bei der Plotausgabe in Plot2d und Plot3d:. 12.B.2. Verdeckte Linien in 3D-PLOT, mathematisches Verfahren. 12.B.5. Parallelwiderstände und Gatestrom, Definition. 12.B.6. Alle Subroutinen in ADIOS. 	90 90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .122 .127 .130 133 .135 .135 .135 .138 .141 .148 .150 152 .153 .153 .155
12	 11.A.5 Die Verengung des Bandabstandes	90 90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .122 .122 .127 .130 133 .135 .135 .135 .153 .153 .155 .156
12	 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht. 11.A.6 Die Massenwirkungsgesetze. 11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation. 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen bei hohen elektrischen Feldstärken. 11.A.15 Das Dotierungsprofil einer Diode. 11.A.16 Die Rekombinationströme in den hoch dotierten Randgebieten. 11.A.17 Die Spannung über eine Diode. 11.A.19 Die Beschaltung einer Diode. 11.A.20 Die Ortsdiskretisierung und die x-Ableitungen. 11.A.21 Die Stroßhonzerströme in dem Scharfetter-Gummel-Algorithmus. 11.A.22 Die Randbedingungen. 11.A.23 Der Lösungsalgorithmus. 11.A.24 Bezeichnung nach dem Scharfetter-Gummel-Algorithmus. 11.A.25 Literaturverzeichnis. Anhang B: 22. Verdeckte Linien in 3D-PLOT, mathematisches Verfahren. 22. B.1 Orientierungen bei der Plotausgabe in Plot2d und Plot3d: 22. B.2. Verdeckte Linien in 3D-PLOT, mathematisches Verfahren. 23. Zeitableitung. Prediktorberechnung, Vektordiagramme - komplexe Signale: 24.B.4 pt-Profil, Beispiel. 25. Parallelwiderstände und Gatestrom, Definition. 28.6 Alle Subroutinen in ADIOS. 28.7 Diskretisierungsraster Silizium 28.8 Speicherplatzbelegung in ADIOS + Calling sequence. 	90 90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .122 .127 .130 133 .135 .135 .135 .138 .141 .153 .153 .155 .156 157
12	 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht. 11.A.6 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen. 11.A.15 Die Rekombinationsströme in den hoch dotierten Randgebieten. 11.A.16 Die Rekombinationsströme in den hoch dotierten Randgebieten. 11.A.17 Die Spannung über eine Diode. 11.A.18 Die Beweglichkeit von Löchern und Elektronen. 11.A.19 Die Beschaltung einer Diode. 11.A.19 Die Beschaltung einer Diode. 11.A.20 Die Otsdiskretisierung und die x-Ableitungen. 11.A.21 Die Stonbioneting einer Diode. 11.A.22 Die Randbedingungen. 11.A.23 Der Lösungsalgorithmus. 11.A.24 Bezeichnungen und Symbole. 11.A.24 Bezeichnungen und Symbole. 11.A.24 Bezeichnungen und Symbole. 11.A.24 Bezeichnungen bei der Plotausgabe in Plot2d und Plot3d: 21.B.2. Urientierungen bei der Plotausgabe in Plot2d und Plot3d: 22.B.3. Zeitableitung, Prediktorberechnung, Vektordiagramme - komplexe Signale: 23. Zeitableitung, Prediktorberechnung, Vektordiagramme - komplexe Signale: 24. 9.+Profil, Beispiel, n+-Profil, Beispiel. 25. Parallelwiderstände und Gatestrom, Definition. 28.6. Alle Subroutinen in ADIOS 28.7. Diskretisierungsraster Silizium. 28.8. Speicherplatzbelegung in ADIOS + Calling seque	90 90 92 94 99 104 .106 .107 .110 .111 114 .116 118 .122 .122 .127 .130 133 .135 .135 .135 .135 .135 .153 .153
12	 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht. 11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht. 11.A.6 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. 11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band. 11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze. 11.A.10 Die Augerrekombination. 11.A.11 Die Oberflächen-Rekombination. 11.A.12 Die Stoßionisation 11.A.13 Die Beweglichkeit von Löchern und Elektronen. 11.A.14 Die Beweglichkeit von Löchern und Elektronen. 11.A.15 Das Dotierungsprofil einer Diode. 11.A.15 Das Dotierungsprofil einer Diode. 11.A.17 Die Spannung über eine Diode. 11.A.19 Die Beschaltung einer Diode. 11.A.19 Die Beschaltung einer Diode. 11.A.21 Die Stoßioning einer Diode. 11.A.21 Die Stoßioning einer Diode. 11.A.21 Die Stormberechnung nach dem Scharfetter-Gummel-Algorithmus. 11.A.21 Die Stomberechnung nach dem Scharfetter-Gummel-Algorithmus. 11.A.22 Die Randbedingungen. 11.A.23 Der Lösungsalgorithmus. 11.A.24 Bezeichnungen und Symbole. 11.A.25 Literaturverzeichnis. Anhang B: 22. Verdeckte Linien in 3D-PLOT, mathematisches Verfahren. 23. Zeitableitung, Prediktorberechnung, Vektordiagramme - komplexe Signale: 24. p+-Profil, Beispiel; n+-Profil, Beispiel. 28. 5. Parallelwiderstände und Gatestrom, Definition. 28. 6. Alle Subroutinen in ADIOS. 28. 7. Diskretisierungaraster Silizium. 28. 4. pel-Pofil, Beispiel, n+-Profil, Beispiel. 28. 4. pel-Pofil, Beispiel, n-Pofil, Beispiel. 28. 4. pel-Pofil, Beispiel, n-Pofil, Beispiel. 28. 4. pel-Subroutinen in ADIOS. 28. 4. pel-Subr	

	105
12.B.11. Lösung der Gleichungen in UP-UPDATE:	
12.B.12. Die Maxwell Gleichungen:	
12.B.13. Vektoranalyse	
12 B 14. Daten für die τ(Λn)-Berechnungen	169
12 B 15 Ferminiveaus	170
13 Anhang C: Logische Abläufe in LIP-MUE LIP-NULLP LIP-SWST und LIP-LIPDATE	172
13.0.1. 0F-MOE(M).	
13.C.2. UP-NULLP(X,F,Z).	
13.C.3. UP-SWST 1	
13.C.4. UP-SWST 2	
13.C.5. UP-SWST 3	
13.C.6. UP-UPDATE 1	
13.C.7. UP-UPDATE 2	
13 C 8 UP-UPDATE 3	179
	180
	181
13.C.12. UP-UPDATE 7	
13.C.13. UP-UPDATE 8	
14. Anhang D: MATHCAD Hilfsberechnungen	
14.D.1. Ableitungen im thermischen Gleichgewicht: KONZ0	
14.D.2. Ableitungen in KONSTA	
Donator	185
Akzentor	186
Gold	186
40.2 Perneulli Euptrian: Nähenungen von Eured dE/dv/	
14.D.3. Demoulii-Funktion, Nanerungen von F und dF/dx	
14.D.4. Augerrekombination.	
14.D.5. Gold	
14.D.6. Ableitung der Beweglichkeiten	
14.D.7. Stoßionisation. Ableitungen in UP-UPDATE	190
14.D.8. Berechnung der Ableitungen der Beweglichkeiten	
14.D.9. Adios Anleitung: Bernoulli-Funktion: Näherungen von F	
14 D 10 Ableitungen von E	192
14 D 11 Berroulli-Funktion Werte und Ableitungen und Näberungen	102
14.D. 12. Ableitungen der Berneulli Eunktion:	102
14.D. 12. Abletiongen der Demodili-Furktion.	
14.D.13. Goldparameter.	
14.D.14. Statistische Funktion für Beweglichkeitsgleichung	
14.D.15. Sperrspannungsberechnung bei 90°C	
14.D.16. Die erforderliche Mittelgebietsdicke d als Funktion der Grunddotierung	
14.D.17. Zur Zeitintegration	
14.D.18. Prediktorberechnung	
14 D 19. Komplexe Gleichungen	201
14 D 20 Transformatoren:	202
14.D.21. Temperatur / Randbedingungen	202
14.D.22. Stromberechnung In OP-OPDATE	
14.D.23. Die erforderliche Breite d ^a der Raumladungszone beim Abschaltvorgang	
14.D.24. Die Ionisierung der Donator- und Akzeptor-Atome	210
14.D.25. Bandgapnarrowing	
14.D.26. Der erforderliche Mindestwert von Ν _{DSI} λ in der Stoppzone von Vierschichtdioden	213
14.D.27. Die Durchlassspannung einer 1000 um dicken Diode als Funktion der Goldkonzentration	
14 D 28. Dotierungsprofile Vierschichtdiode	215
14 D 29 Dotierungsprofile	217
14 D 30 9 x 9 Matrix leer	217 21Q
14 D 21 Hochinicktionslohonsdauer von Cold in us als Euriktion der Temperatur in °C	
14.D.31. Hochinjekuonsiebensuauer von Gold in µs als Funktion der Temperatur in U	
14.D.32. Beispiel von dem widerstandsverlauf eines Schalttransistors wahrend eines Einschaltvorgange	es221
14.D.33. Berechnung von DTMIN aus den Stromgleichungen	221
14.D.34. Berechnung von dJDI/dUDIO wegen dJDI/dEFELD(L) = (dJDI/dUDIO)*DX(L)	222
14.D.35. Berechnung von j _{pi} und j _{ni}	
14.D.36. EFELD-Berechnung aus den Stromgleichungen in UP-ANF, Anfangsbedingungen	
14.D.37. Berechnung von Δn und Δp für UP-ANF	224
14.D.38. Berechnung von $\Delta i_{r}=f(\Delta E)$.	224
14 D 39 Berechnung der Dotierungsbesetzungen in LIP-LIPDATE (Dynamik)	225
14 D 40. Verlustleistungsberechnung bei stationärem Vorwärtestrom	·····225 007
า ง ตามจนต่องนามจมตายงาทนาม มตา จเล่นงาลายา ง งาพลาเจจนิงไปไไ	

2. Alphabetischer Index der Ein- und Ausgabeparameter:

Der folgende alphabetische Index der Ein- und Ausgabeparameter enthält alle in ADIOS auftretenden Fortrannamen, die in diesem Benutzermanual beschrieben werden. Durch die folgende alphabetische Auflistung kann der Benutzer schnell feststellen, ob das Manual Information zu einem gesuchten Fortrannamen enthält.

Fortranname	CNKZ2	ECAAZ	HMUP7	METREC	PTZ
A		ECAPT		MUDELL	PXZ
			HNIOF9	MUN	Q
		ECAVZ ECAVZ	HP	MUTYP	
	CNV71	FCDDO	HSI 1		
	CNVZ1	EODDO EDVKZ	HSI 2	Ν	R
	CNVZ2	FDVPT	HSL3	N	П
	CNVZ22	EDVR7	HSI 4		
	CONVGD	FFFLD	HSL5	ΝΔΜΔΥ1	
	CPAR	EFELDN			
	CPAZ1	FFFL DP	I		RENP
	CPA72	FFN	10		RG
	CPKZ1	FFP			
	CPPTAEX	EFP - EV			
		EHEMODE			
	CPPTDEX			NAMINIA NAMINIA	RLIPAR
	CPPTDMA	F			
					RNAKMA
					RNDOEX
					RNDOMA
		FREQ			RPAKEX
		G			RPAKMA
APIKZ					RPDOEX
AQUER	CF VZZZ	GAMAS		NDMAX4	RPDOMA
AUSTYP	D	- <u></u>	-IISCHRITTE		RSTART
			J		RIHL
AXK_EE		Н			RIHN
AXK_HE	DELTA	HE1	JDI	NDMIN4	RIHP
В		HE2	JN		RIHR
	DISCUT	HE3	JP	NI NUT TO	RWERI
BAKZEP		HE4	ĸ	-NI^2	RZ
BAZAKZ		HE5	··		RZEII
BDONAT	DN1	HE6	KAC	NMAX	<u> </u>
BGNCTK	DN2	HEN1	KAV	NPIN	0
BGNNC	DN3	HEN2	KDC	NPIP	SIMTYP
BGNNV	DN4	HEN3	KDV	NREF	SNL0
BGNTYP	DONO	HEN4	KERN3D	NRZ0	SNLEX
BGNVTK	DONX	HEP1	KONV	NRZN	SNR0
BKZDON	DP1	HEP2		_NRZP	SNREX
BNRZEX	DP2	HEP3	L	NRZX	SPL0
BNRZMA	DP3	HEP4	LO	NVZN	SPLEX
BPRZEX	DP4	HMUN1	L1	D	-SPR0
BPRZMA	DT	HMUN2	L2	•	SPREX
BPTAKZ	DTMAXI	HMUN3	LAMBD	Р	
BPTDON	DTMAXO	HMUN4	LAMBDL	PDIO	T
BRZAKZ	DTMINI	HMUN5	LAMBDR	PLOT2D	Т
BRZDON	DTMINO	HMUN6	LOGAUG	PLOT3D	TANE
BVZAKZ	DTOUT	HMUN7	LOGEPS	PROFN1	TAUN
	_DX	HMUN8		PROFN2	TAUNO
L C	DXANOD	HMUN9	I TEMP	PROFN3	TAUNX
С	DXGATE	HMUP1	IWERT	PROFN4	TAUP
CNAZ1		-HMUP2	I 7FIT	PROFP1	
CNAZ12	E	HMUP3		_PROFP2	
CNAZ2	EAVAK	HMUP4	Μ	PROFP3	TEMP
CNAZ22	EC - EFN	HMUP5		PROFP4	
CNKZ1	EC - EV	HMUP6	METLIC	PTKONZ	TEMPLI

TEMPRE TEXPR0	TFIN TI1 TI2	<mark>U</mark> U*I	UG UL	WDIO WR	Z ZEITSCHRITTE
TEXPR1 TEXPR2 TEXPRF TEXPT0 TEXPT1	TI2 TI3 TKCARZ TKDVRZ TYP	UAN UC UD UDIF	VXK_EE VXK_HE	X X XMETL –XMETR	ZK ZKURZ

3. Der Standardeingabedatensatz für ADIOS: Adios-input.dat:

Der im Folgenden angegebene Standardeingabedatensatz ist als Beispiel gedacht, das dem Benutzer einen Überblick über die Anzahl der Eingabedaten vermitteln soll. Die dabei angegebenen Belegungen sollten auch für erste Simulationen verwendet werden, da mit ihnen ein Rechenlauf erfolgt, der nicht aufgrund von erfüllten Abbruchkriterien vorzeitig selbst endet. Der Name des Eingabedatensatzes ist Adios-input.dat, wobei &NR die Dateifolgenummer genannt wird.

Folgende ASCI-Zeichen sind zulässig, Nr. 32 bis 126: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ !"#\$%&'()*+,-./0123456789:;<=>?@[\]^_{{}~ Adios-input.dat Dateien müssen in ANSI abgespeichert werden.

```
!Gold doped diode, di/dt = 200 A/us, IF = 300A
!
!23456789012345678901234567890123456789012345678 012345678901234567890123
!
                             3
                                         4
                                                5
        1
                   2
                                                              6
                                                                        7
!The first 48/73 characters of the first/second row will be read as comment
!and appear in the output file and in the 2D- and 3D-PLOTs. Max.80 Char/row
! = comments
I.
1
           TANF, TFIN, DTOUT, CPUMAX, ZK, DTMAXI, DTMINI
TI<ME>=0.00D-6,5.00D-6, 101,320000,25D-9, 1D-3, 1D-16
!
!RSTART, DIALOG, DISOUT , ZKURZ, LTEMP , SIMTYP, FEHL2, AUSTYP
!AUSTYP=UL, IAN, UAN, IRG, UTR
LO<GICALS>=F,T,F ,T,T ,0,1D-3,UL
1
! DX
DX=.75D-4
DX=199*1.5D-4
DX=.75D-4
1
!RTHP, RTHN, RTHL, RTHR
RT<HERM>=0,.16129,.16129,.16129
1
!METLIC, METREC, XMETL, XMETR , RHOMCL, LAMBDL, RHOMCR, LAMBDR
!MET..C = AL, CR, CU, GE, AU, FE, MO, NI, PT, SI, AG, W, TI, XX
ME<TALL>=MO,CU,.15,.15 ,2.703,1.35,3.513,3.981
1
        UD, L1, I0, TEMPO, AQUER, DXGATE, RG, DXANOD, RAN, RL1PAR
I.
UI<TA>=600,3D-6,300, 125, 1.66, 10D-4, 1D6, 10D-4, 1D6, 1D12
I.
L
      TEXPRF, TEXPRO, TEXPTO, TEXPR1, TEXPT1, TEXPR2, TEXPT2
TREXP=7.5D-3, 0D0, 5D-9, 21590D0, 12.3D-9, 4.76D0, 118D-9
!TI1,TI2,TI3 ,AMPL,FREQ
OS<ZILLATION>=0,0,0,0,0
L
!LZEIT
LZ<EIT>=0
!LWERT
LW<ERT>=0
!IGZEIT
IGT=0
' TGWERT
TGW=0
!Snubber
!R,C,L2,CPAR
RC=10,0.22D-6,0,0
I.
```

```
!Non linear inductivity
!LO,IK,IST
ST<UFENKERN>=0,2,10
!PROFN1, DN1, NDMAX1, NDMIN1
N1=3,60.0D-4,7.5D19,7.7D13
I.
! PROFN2, DN2, NDMAX2, NDMIN2
N2=3,1D-30,0,0
1
!PROFN3, DN3, NDMAX3, NDMIN3
N3=3,1D-30,0,0
! PROFN4, DN4, NDMAX4, NDMIN4
N4=3,1D-30,0,0
!PROFP1, DP1, NAMAX1, NAMIN1
P1=3,55.8D-4,2.2D19,7.7D13
1
!PROFP2, DP2, NAMAX2, NAMIN2
P2=3,1D-30,0,0
1
!PROFP3, DP3, NAMAX3, NAMIN3
P3=3,1D-30,0,0
1
!PROFP4, DP4, NAMAX4, NAMIN4
P4=3,1D-30,0,0
1
! DONX
NDX=0
!DON0
NDW=7.7D13
1
!AKZX
NAX=0
!AKZO
NAW=0
1
!NRZX
NRZX=0
!NRZO
NRZW=4.7D13
!NRZW= 0D13
1
!HE1, HE2, HE3, HE4, HE5, HE6, PTKONZ
HE<LIUM>=0D13, 0D13,17.08D-4,0.692D-4,0.647D0,17.23D0,0D13
!HE<LIUM>=5D13,50D13,17.08D-4,0.692D-4,0.647D0,17.23D0,0D13
!HE<LIUM>=0D13, 0D13,17.08D-4,0.692D-4,0.647D0,17.23D0,4D13
1
     AXK HE, AXK EE, VXK HE, VXK EE, EHEMODE
I.
EHE=0.537D0,0.537D0,0.122D0, 0D0,
                                      1
1
!E(90K) A-Zentrum AKZEPTOR-Niveau
        BAZAKZ, ECAAZ, CNAZ1, CNAZ2, CNAZ12, CNAZ22, CPAZ1, CPAZ2
!
AZ<ENTRUM>=2.0,0.167,1.15D-7,355.4D0,0.872D-7, 474D0,6.39D-7,-6.15D-3
!E(230K) VV-Zentrum Multivacancy AKZEPTOR-Niveau
            BVZAKZ, ECAVZ, CNVZ1, CNVZ2, CPVZ1, CPVZ2
1
V1Z<ENTRUM>=2.00D0,0.447D0,3.41D-8,-22.13D-3,2.79D-8,22.13D-3
             ECAVZ2, CNVZ12, CNVZ22, CPVZ12, CPVZ22
1
V2Z<ENTRUM>=0.553D0,4.98D-6,273.15D0,4.58D-10,31.25D0
!H(195K) K-Zentrum DONOR-Niveau
           BKZDON, EDVKZ, CNKZ1, CNKZ2, CPKZ1
1
KZ<ENTRUM>=2.00D0,0.351D0,9.85D-9,85D-3,4.3D-9
```

```
1
! PT-DONOR-Niveau
!
       BPTDON, EDVPT, CNPTDMA, CNPTDEX, CPPTDMA, CPPTDEX
PTD=2.00D0,0.320D0,3.340D-8, -3.5D0,3.023D-8,0.411D0
!
! PT-AKZEPTOR-Niveau
1
    BPTAKZ, ECAPT, CNPTAMA, CNPTAEX, CPPTAMA, CPPTAEX
PTA=2.00D0,0.228D0,1.484D-7, 2.5D0,8.943D-8, -3.9D0
I.
!DLKEXP,DLKMIN
DL<KENNLINIE>=2,1D-3
!Example of a free eligible resistor sequence
!RZE<IT>=0D0,42D-9,49D-9,56D-9,63D-9,70D-9,84D-9,112D-9,140D-9,168D-9
!RW<ERT>=355,55,27,16,12,10,8,6,3.5,.5
IRZETT
RZE<IT>=0
!RWERT
RW<ERT>=0
!
!BGNNC, BGNNV, BGNTYP, BGNCTK, BGNVTK
BG<NARROWING>=T, T, 0, 0, 0
1
!MODELL, NREF, GAMAS
SR<H>=0,2.5D15,.6
1
!TAUNX
TNX=0
!TAUN0
TNW=3.00D-6
1
! TAUPX
TPX=0
!TAUPO
TPW=0.60D-6
1
!SPL0,SPLEX,SNL0,SNLEX ,SPR0,SPREX,SNR0,SNREX
SU<RF>=1D7,-1,1D7,-1,1D7,-1,1D7,-1
!EFELDP, EFELDN
EF < ELD > = 0, 0
1
!LOGEPS
EP<SILON>=F
1
!BDONAT, ECDDO , RPDOMA, RPDOEX, RNDOMA, RNDOEX
DON=2.00,0.044 ,2.00D-13,0.500,2.00D-13,-1.00
1
!BAKZEP, EAVAK , RPAKMA, RPAKEX, RNAKMA, RNAKEX
AKZ=2.00,0.045 ,2.00D-13,-1.00,2.00D-13,0.500
I.
!BRZDON, EDVRZ, TKDVRZ , BPRZMA, BPRZEX, BNRZMA, BNRZEX
RZD=2.00,0.350,T ,6.755D-8,0.500,1.737D-8,-1.60
I
!BRZAKZ,ECARZ,TKCARZ ,APRZMA,APRZEX,ANRZMA,ANRZEX
RZA=2.00,0.550,T ,1.737D-7,-0.80,1.640D-9,0.500
!LOGAUG, AN0, ANTK1, ANTK2 , AP0, APTK1, APTK2
AU<GER>=T,0.67D-31,8.16D-34,-2.44D-37,0.72D-31,0.15D-34,2.92D-37
!AVA, ALNMA, ALNEX, ALNTK , ALPMA, ALPEX, ALPTK
AV<ALANCHE>=T,7.030D5,-1.231D6,-1.1D3 ,1.582D6,-2.036D6,-1.1D3
!MUTYP, HSL1, HSL2, HSL3, HSL4, HSL5
MUT<YP>=1,14.88D20,7.87D8,1,1,-0.52
```

!
!
HMUN1,HMUN2,HMUN3,HMUN4,HMUN5,HMUN6,HMUN7,HMUN8,HMUN9
MUN=88,1251.81,-.57,-2.33,.88,-.146,-2.4,1.26D17,.70
!
!HMUP1,HMUP2,HMUP3,HMUP4,HMUP5,HMUP6,HMUP7,HMUP8,HMUP9
MUP=54.3,406.97,-.57,-2.23,.88,-.146,-2.4,2.35D17,.70
!
LOGMUE,HEN1,HEN2,HEN3,HEN4,HEP1,HEP2,HEP3,HEP4
MUE=T,2.57D-2,.66,1.434D9,-.87,.46,.17,1.624D8,-.52

3.1. Programmkontrolle:

Folgende Werte erscheinen, wenn der Standarddatensatz verwendet wird: Als erster Ausgabeschritt: UDIO= 1.5655559E+00 V UDIF= 8.6391416E-01 V (=stationär) Z.B. Als 101. Ausgabeschritt:

Result number= 101 CPU-time= 116.0 s time steps= 7474 T = 5.0000000E-06 s DT = 3.9500000E-09 s IT.-steps = 20167 UDIO=-6.1807835E+02 V UDIF= 8.6391416E-01 V UL = 1.8078349E+01 V IDI =-1.9035278E-02 A JDI =-1.1467035E-02 A/cm2 IL =-7.5794480E+00 A IG = 0.000000E+00 A UG = 7.6835599E-06 V IRG = 7.6835599E-12 A IAN = 5.8978991E-13 A UAN = 5.8978991E-07 V UTR = 0.0000000E+00 V IC =-7.5604127E+00 A UC =-5.4247422E+02 V HP = 7.7296489E-13 cm**4/s PDIO= 1.6532930E+01 W U*I = 1.1765293E+01 W HN = 9.0593537E-14 cm**4/s WDIO= 5.3365335E-02 Ws WR = 1.0485267E-01 Ws QRR = 1.9701280E+02 UAs

3.2. Beschreibung der Eingabekonventionen:

Das Programm ADIOS liest einen Charactersatz mit maximal 80 CHARACTERS und wandelt die Daten in REALS, INTEGERS bzw. LOGICALS um.

Die Zehnerpotenzangabe in REAL-Zahlen geschieht mit e, E, d oder D.

Die Struktur einer Eingabezeile ist: Schlüsselwort = Daten (durch Kommas getrennt)

Die Buchstaben in spitzen Klammern < bzw. > im Schlüsselwort brauchen nicht angegeben zu werden.

Eingabezeilen die mit "!" anfangen sind Kommentarzeilen.

Die Zuordnung der Daten (Variablen) zu den jeweiligen Schlüsselwörtern wird durch die Kommentarzeilen im Standarddatensatz angegeben.

In den Eingabezeilen werden Leerzeichen ignoriert. Trennzeichen sind: , und = (nur 1* nach dem Schlüsselwort)

Bei Fehler in der Eingabe werden die Defaultwerte übernommen.

LOGICALS dürfen nur mit T oder F eingegeben werden.

Vor dem Schlüsselwort dürfen Leerzeichen stehen; im Schlüsselwort nicht.

Fortsetzungszeilen missen mit dem jeweiligen Schlüsselwort anfangen.

Fortsetzungszeilen sind erlaubt bei:

DX, NDX, NDW, NAX, NAW, NRZX, NRZW, IGT, IGW, RZEIT, RWERT, TNX, TNW, TPX, TPW Bei diesen Variablen sind maximal GR0 = 1000 Eingabedaten erlaubt. (Außer bei DX: GR0 + 1). Weitere Daten werden ignoriert.

In allen anderen Fällen werden durch Fortsetzungszeilen die vorher eingegebene Daten überschrieben.

Sind die Eingabezeilen nicht vollständig, dann werden für die fehlenden Daten die DEFAULT-Werte übernommen, es sei denn, es wurde vorher eine Eingabezeile mit dem gleichen Schlüsselwort und mit mehr Eingabedaten eingegeben.

Bei der Eingabe von ,, wird für die betreffende Variable ebenfalls den DEFAULT-Wert (= Voreinstellung) verwendet. Für die DEFAULT-Werte siehe unterstehende Variablen-Beschreibung.

Bei der Eingabe von DX ist das Format INT * REAL in einer Zeile erlaubt. INT = Multiplikator: Eingabe von INT REAL-Zahlen.

ADIOS findet das Ende der Eingaben automatisch.

4. Beschreibung der Darstellungsstruktur der Ein- und Ausgabedaten:

Alle angegebenen Informationen zu den Fortranvariablen sind wie folgt strukturiert:

Fortran: Name der Variable im Fortran-Programm

zulässig: zulässiger Eingabewert

Voreinstellung: voreingestellter Wert (Default Wert)

Formel: Gleichung im Fortran-Programm, Angabe der Nummer der Formel im Anhang

Name(A): Name der Variable im Anhang, kurze Erklärung

Aufgrund dieser Erläuterung sind die angegebenen Informationen den Fortranvariablen eindeutig zuzuordnen. Um die Lesbarkeit der angebotenen Informationen zu erhöhen, werden nach jeder behandelten Struktur des oben beschriebenen Typs vier Leerzeilen eingefügt.

Die Dimensionsangabe erfolgt genau dann, wenn die entsprechende Eingabegröße eine Dimension hat.

Zusätzlich zu der oben gewählten Strukturierung der Erklärung der Eingabedaten werden zur Verdeutlichung Texteinschübe verwendet. Diese sind gesondert gekennzeichnet, falls es sich nicht um Angaben über das Auftreten von Namen in programmierten Formeln handelt.

Bei der Kennzeichnung von der für die Programmausführung wesentlichen Informationen für den übergeordneten Zusammenhang wichtiger Erklärungen, oder der Angabe von den für die Eingabe wesentlichen Formeln, wurde das Terminalsymbol "+" zur Einrahmung der entsprechenden Abschnitte und zur Unterstreichung der behandelten Thematik, falls zur Übersicht nötig, verwendet.

Bei Eingabedaten, die unzulässig sind, wurde zur Kennzeichnung wichtig:

^^^^^ , gefolgt von " !!! " nach Ende der Warnung verwendet. Angaben zu der Thematik, auf die sich die Eingabedaten beziehen, werden mit "=" unterstrichen.

5. Die Beschreibung der Eingabedaten:

5.1. Hinweise zu den Eingabemöglichkeiten der Rekombinationszentren:

Folgende vier Varianten sind möglich:

Variante 1: Rekombinationszentrum mit zwei Energieniveaus, dem Donator- und dem Akzeptorniveau, im verbotenen Band

Variante 2: Rekombinationszentrum mit nur dem Donatorniveau im verbotenen Band

Variante 3: Rekombinationszentrum mit nur dem Akzeptorniveau im verbotenen Band

Variante 4: Rekombination ohne Rekombinationszentren

Um die entsprechenden Varianten zuzuschalten, sind folgende Eingaben für die über die Variantenwahl entscheidenden Parameter BPRZMA, BNRZMA, APRZMA, ANRZMA und NRZ0 notwendig:

Variante	NRZ0 	BPRZMA und BNRZMA 	APRZMA und
1	.GT. 0D0	.GT. 0D0	.GT. 0D0
2	.GT. 0D0	.GT. 0D0	.EQ. 0D0
3	.GT. 0D0	.EQ. 0D0	.GT. 0D0
4	.EQ. 0D0	.GE. 0D0	.GE. 0D0

Da, wie aus der Tabelle ersichtlich, BPRZMA und BNRZMA sowie APRZMA und ANRZMA zur Variantenwahl den gleichen Restriktionen unterliegen, gelten folgende zwei Bedingungen, die eine zulässige Eingabe, erfüllen muss.

wichtig: Es muss stets gelten: (BPRZMA .EQ. 0D0) .EQV. (BNRZMA .EQ. 0D0) = .TRUE. !!! wichtig: Es muss stets gelten: (APRZMA .EQ. 0D0) .EQV. (ANRZMA .EQ. 0D0) = .TRUE. !!!

5.2. Parameter für die Berechnung der Massenwirkungskonstanten des Donators:

Fortran: BDONAT zulässig: 0D0 .LT. BDONAT .LT. 1D2 Voreinstellung: 2.00D0 Name(A): β_D: effektiver Spinentartungsfaktor für Donatoren

Fortran: ECDDO zulässig: 0D0 .LE. ECDDO .LE. EGMIN # EGMIN = minimaler Bandabstand bei maximaler Temperatur # Voreinstellung: 0.044D0 Dimension: V Name(A): E_C - E_D: Energieabstand zwischen Leitungsband und Donatorniveau

Mit $\beta_{\text{D}},\, \textbf{E}_{\text{C}}$ - \textbf{E}_{D} ist folgende Formel programmiert: (A.6.11)

5.3. Parameter für die Rekombinationskoeffizienten der Donatoren:

Fortran: RPDOMA zulässig: RPDOMA .GT. 0D0 Voreinstellung: 2.00D-13 Dimension: cm³/s Fortran: RPDOEX zulässig: -10D0 .LE. RPDOEX .LE. 10D0 Voreinstellung: 0.500D0

Formel: RPDON = RPDOMA * (T/300K) ** RPDOEX Name(A): r_p: Rekombinationskoeffizient für die Löcher bei der Rekombination über ein Rekombinationszentrum mit einem Energieniveau im verbotenen Band für Donatoren

Fortran: RNDOMA zulässig: RNDOMA .GT. 0D0 Voreinstellung: 2.00D-13 Dimension: cm³/s

Fortran: RNDOEX zulässig: -10D0 .LE. RNDOEX .LE. 10D0 Voreinstellung: -1.00D0

Formel: RNDON = RNDOMA * (T/300K) ** RNDOEX Name(A): r_n: Rekombinationskoeffizient für Elektronen bei der Rekombination über ein Rekombinationszentrum mit einem Energieniveau im verbotenen Band für Donatoren

Mit r_p, r_n sind folgende Formeln programmiert: (A.7.4), (A.7.5), (A.7.6), (A.7.9), (A.7.10), (A.7.11)

5.4. Parameter für die Berechnung der Massenwirkungskonstanten des Akzeptors:

Fortran: BAKZEP zulässig: 0D0 .LT. BAKZEP .LT. 1D2 Voreinstellung: 2.00D0 Name(A): β_A: effektiver Spinentartungsfaktor für Akzeptoren

Fortran: EAVAK zulässig: 0D0 .LE. EAVAK .LE. EGMIN # EGMIN = minimaler Bandabstand bei maximaler Temperatur # Voreinstellung: 0.045D0 Dimension: V Name(A): E_A - E_{V:} Energieabstand zwischen Akzeptorniveau und Valenzband

Mit β_A , E_A - E_V ist folgende Formel programmiert: (A.6.12)

5.5. Parameter für die Rekombinationskoeffizienten der Akzeptoren:

Fortran: RPAKMA zulässig: RPAKMA .GT. 0D0 Voreinstellung: 2.00D-13 Dimension: cm³/s

Fortran: RPAKEX zulässig: -10D0 .LE. RPAKEX .LE. 10D0 Voreinstellung: -1.00D0

Formel: RPAKZ = RPAKMA * (T/300K) ** RPAKEX Name(A): r_p: Rekombinationskoeffizient für Löcher bei der Rekombination über ein Rekombinationszentrum mit einem Energieniveau im verbotenen Band für Akzeptoren

Fortran: RNAKMA zulässig: RNAKMA .GT. 0D0 Voreinstellung: 2.00D-13 Dimension: cm³/s

Fortran: RNAKEX zulässig: -10D0 .LE. RNAKEX .LE. 10D0 Voreinstellung: 0.500D0

Formel: RNAKZ = RNAKMA * (T/300K) ** RNAKEX Name(A): r_n: Rekombinationskoeffizient für Elektronen bei der Rekombination über ein Rekombinationszentrum mit einem Energieniveau im verbotenen Band für Akzeptoren

Mit r_p, r_n sind folgende Formeln programmiert: (A.7.13), (A.7.14), (A.7.15), (A.7.18), (A.7.19), (A.7.20)

5.6. Parameter für die Rekombinationskoeffizienten des Donatorniveaus der Rekombinationszentren:

Fortran: BRZDON zulässig: 0D0 .LT. BRZDON .LT. 1D2 Voreinstellung: 2.00D0 Name(A): β_D: effektiver Spinentartungsfaktor für das Donatorniveau des Rekombinationszentrums

Fortran: EDVRZ zulässig: 0D0 .LE. EDVRZ .LE. EGMIN # EGMIN = minimaler Bandabstand bei maximaler Temperatur # Voreinstellung: 0.350D0 Dimension: V Name(A): E_D - E_V: Energieabstand zwischen Donatorniveau des Rekombinationszentrums und Valenzband #

Fortran: TKDVRZ zulässig: TKDVRZ = F (FALSE) oder TKDVRZ = T (TRUE) # TKDVRZ = F: Energieabstand E_c - E_D ist temperaturunabhängig TKDVRZ = T: Energieabstand E_D - E_V ist temperaturunabhängig # Voreinstellung: T

Mit β_D , $E_D - E_V$ ist folgende Formel programmiert: (A.6.17)

wichtig: Es muss stets gelten (BPRZMA .EQ. 0D0) .EQV. (BNRZMA .EQ. 0D0) = .TRUE. !!!

Fortran: BPRZMA zulässig: BPRZMA .GE. 0D0 Voreinstellung: 6.755D-8 Dimension: cm³/s

Fortran: BPRZEX zulässig: -10D0 .LE. BPRZEX .LE. 10D0 Voreinstellung: 0.500D0

Formel: BP = BPRZMA * (T/300K) ** BPRZEX # entspricht (A.9.1) # Name(A): β_p: Einfang-Koeffizient für Löcher durch neutrale Rekombinationszentren mit zwei Energieniveaus im verbotenen Band

Fortran: BNRZMA zulässig: BNRZMA .GE. 0D0 Voreinstellung: 1.737D-8 Dimension: cm³/s

Fortran: BNRZEX zulässig: -10D0 .LE. BNRZEX .LE. 10D0 Voreinstellung: -1.60D0

Formel: BN = BNRZMA * (T/300K) ** BNRZEX # entspricht (A.9.1) #

Name(A): β_n: Einfang-Koeffizient für Elektronen durch einfach positiv geladene Rekombinationszentren mit zwei Energieniveaus im verbotenen Band

Mit β_p , β_n sind folgende Formeln programmiert: (A.8.1), (A.8.2), (A.8.3), (A.8.4), (A.8.9), (A.8.20), (A.8.24), (A.8.26), (A.8.31), (A.8.32), (A.8.33), (A.8.33), (A.8.34)

5.7. Parameter für die Rekombinationskoeffizienten des Akzeptorniveaus der Rekombinationszentren:

Fortran: BRZAKZ zulässig: 0D0 .LT. BRZAKZ .LT. 1D2 Voreinstellung: 2.00D0 Name(A): β_A: effektiver Spinentartungsfaktor für das Akzeptorniveau des Rekombinationszentrums

Fortran: ECARZ zulässig: 0D0 .LE. ECARZ .LE. EGMIN # EGMIN = minimaler Bandabstand bei maximaler Temperatur # Voreinstellung: 0.550D0 Dimension: V Name(A): Ec- EA: Energieabstand zwischen Leitungsband und Akzeptorniveau des Rekombinationszentrums

Fortran: TKCARZ zulässig: TKCARZ = F (FALSE) oder TKCARZ=T (TRUE) # TKCARZ = F: Energieabstand E_A- E_V ist temperaturunabhängig TKCARZ = T: Energieabstand E_C- E_A ist temperaturunabhängig # Voreinstellung: T

Mit β_A , E_C- E_A ist folgende Formel programmiert: (A.6.18)

wichtig: Es muss stets gelten (APRZMA .EQ. 0D0) .EQV. (ANRZMA .EQ. 0D0) = .TRUE. !!!

Fortran: APRZMA zulässig: APRZMA .GE. 0D0 Voreinstellung: 1.737D-7 Dimension: cm³/s

Fortran: APRZEX zulässig: -10D0 .LE. APRZEX .LE. 10D0 Voreinstellung: -0.80D0

Formel: AP = APRZMA * (T/300K) ** APRZEX # entspricht (A.9.1) # Name(A): α_p: Einfang-Koeffizient für Löcher durch einfach negativ geladene Rekombinationszentren mit zwei Energieniveaus im verbotenen Band

Fortran: ANRZMA zulässig: ANRZMA .GE. 0D0 Voreinstellung: 1.640D-9 Dimension: cm³/s

Fortran: ANRZEX zulässig: -10D0 .LE. ANRZEX .LE. 10D0 Voreinstellung: 0.500D0

Formel: AN = ANRZMA * (T/300K) ** ANRZEX # entspricht (A.9.1) #

Name(A): α_n : Einfang-Koeffizient für Elektronen durch neutrale Rekombinationszentren mit zwei Energieniveaus im verbotenen Band

Mit α_p , α_n sind folgende Formeln programmiert: (A.8.1), (A.8.2), (A.8.4), (A.8.10), (A.8.19), (A.8.25), (A.8.27), (A.8.31), (A.8.32), (A.8.33), (A.8.33), (A.8.34)

5.8. Parameter für das Ortsdiskretisierungsgitter:

Das Diskretisierungsgitter muss manuell eingegeben werden.

Das Programm rechnet während der gesamten Laufzeit mit einem festen Diskretisierungsgitter für den Ort. Hierbei ist festgelegt, dass der erste Gitterpunkt stets im p⁺ - Gebiet und der letzte Gitterpunkt stets im n⁺ - Gebiet liegt. Diese Konvention wird bei den Eingabedaten vorausgesetzt und gilt für Dioden und Thyristoren.

Beim Ausräumen eines pn-Überganges im dynamischen Fall variiert die Ladungsträgerkonzentration bei geringfügiger Ortsänderung um mehrere 10-er Potenzen. Der Ort, wo diese rapide Veränderung der Ladungsträgerkonzentration stattfindet, ist zeitabhängig. Eine Änderung der Gitterabstände im Mittelgebiet und die Gitterabstände selbst sollen deshalb nicht zu groß gewählt werden. Für den Abstand zwischen zwei Hauptgitterpunkten im Mittelgebiet ist ein Maximalwert von 3 - 3,5 µm zu empfehlen.

Sollte der Abstand zwischen den Hauptgitterpunkten zu groß sein, sind in der Kurve, die den Rückstromverlauf beim Abschalten der Diode (Bild A.19.2) darstellt, Oszillationen im Bereich t₃ bis kurz nach t₄ festzustellen. Diese verschwinden bei der Verkleinerung der Gitterabstände. Bei der Wahl der Abstände im stark dotierten n- und p-Gebiet empfiehlt es sich die Wahl so zu treffen, dass die Differenz der Dotierungskonzentrationen von zwei aufeinander folgenden Hauptgitterpunkten nie größer als 100% bezogen auf ihren Mittelwert ist.

Die Eingabe muss in folgender Form erfolgen: (vgl. Skizze zu Beginn von A.20 zur Definition, der im folgenden auftretenden Begriffe Zwischengitterpunkt und Hauptgitterpunkt). Es müssen die Abstände zwischen Zwischengitterpunkt 1 und Hauptgitterpunkt 1, zwischen Hauptgitterpunkt 1 und 2,..., zwischen Hauptgitterpunkt n-1 und n sowie zwischen Hauptgitterpunkt n und Zwischengitterpunkt n+1 eingegeben werden, und zwar genau in der Reihenfolge der Aufzählung. Hierbei entspricht der Name n des Anhanges dem Fortrannamen NMAX, der nach der Eingabe von DX automatisch erzeugt wird.

Es ist zu beachten, dass die maximale Feldgröße durch den Fortranparameter GR0 = 1000 begrenzt ist. Wird ein größeres Feld als GR0+1 eingegeben, so werden die zu viel eingegebene Daten ignoriert. Eine Warnung wird ausgegeben.

Fortran: DX

zulässig: DX.GT.0D0

bei dem Fortrannamen DX handelt es sich um ein Feld mit Länge NMAX+1. NMAX wird vom Programm anhand der Zahl der eingegebenen DX-Werte berechnet. Aufgrund der numerischen Genauigkeit und Stabilität der angewandten Lösungsalgorithmen ist es empfehlenswert, $dx_{n+1} = dx_n / 2$ wie $dx_1 = dx_2 / 2$ zu wählen, wie auch dx so zu wählen, dass die die Änderung des Feldes zwischen zwei aufeinander Punkten kleiner als ca. 33 % bleibt. Diese Empfehlungen werden vom Programm nicht überprüft. # Es müssen minimal 4 DX-Werte eingegeben werden. Es werden maximal GR0 + 1 (GR0 = 1000) DX-Werte eingelesen.

Voreinstellung: - Dimension: cm

Name(A): dx_i: für i .EQ. 1 Abstand zwischen Zwischengitterpunkt 1 und Hauptgitterpunkt 1, für

2 .LE. i .LE. NMAX Abstand zwischen Hauptgitterpunkt i-1 und Hauptgitterpunkt i, für

i .EQ. (NMAX+1) zwischen Hauptgitterpunkt NMAX und Zwischengitterpunkt NMAX+1

5.9. Parameter für die Beweglichkeit der Elektronen bei hohen elektrischen Feldstärken:

Fortran: HEN1 zulässig: 0D0 .LT. HEN1 .LE. 10D0 Voreinstellung: 2.57D-2

Fortran: HEN2 zulässig: 0D0 .LE. HEN2 .LE. 10D0 Voreinstellung: .66D0

Formel: BETHAN = HEN1 * (T/K) ** HEN2 Name(A): β: Exponent bei der Berechnung der Beweglichkeit der Elektronen bei hohen elektrischen Feldstärken in (A.14.2)

Fortran: HEN3 zulässig: 0D0 .LT. HEN3 .LE. 1D30 Voreinstellung: 1.434D9 Dimension: cm/s

Fortran: HEN4 zulässig: -10D0 .LE. HEN4 .LE. 0D0 Voreinstellung: -.87D0

Formel: VDMN = HEN3 * (T/K) ** HEN4 Name(A): v_{D max}: maximale Driftgeschwindigkeit für Elektronen

Mit β , v_{D max} sind folgende Formeln programmiert: (A.14.2), (A.14.4), (A.14.6)

Siehe auch den logischen Parameter LOGMUE zum Ein- und Ausschalten dieses Modells.

5.10. Parameter für die Beweglichkeit der Löcher bei hohen elektrischen Feldstärken:

Fortran: HEP1 zulässig: 0D0 .LT. HEP1 .LE. 10D0 Voreinstellung: .46D0

Fortran: HEP2 zulässig: 0D0 .LE. HEP2 .LE. 10D0 Voreinstellung: .17D0

Formel: BETHAP = HEP1 * (T/K) ** HEP2 Name(A): β : Exponent bei der Berechnung der Beweglichkeit der Löcher bei hohen elektrischen Feldstärken in (A.14.2)

Fortran: HEP3 zulässig: 0D0 .LT. HEP3 .LE. 1D30 Voreinstellung: 1.624D8 Dimension: cm/s

Fortran: HEP4 zulässig: -10D0 .LE. HEP4 .LE. 0D0 Voreinstellung: -.52D0

Formel: VDMP = HEP3 * (T/K) ** HEP4 Name(A): v_{D max}: maximale Driftgeschwindigkeit für Löcher

Mit β , v_{D max} sind folgende Formeln programmiert: (A.14.2), (A.14.5), (A.14.7)

Siehe auch den logischen Parameter LOGMUE zum Ein- und Ausschalten dieses Modells.

5.11. Parameter für die Beweglichkeit der Elektronen bei niedrigen elektrischen Feldstärken im Modell der Beweglichkeit von N. D. Arora:

Formel für die Eingabeparameter, analog zu (A.13.1):

HMUN4 HMUN3 HMUN2 * (T/300K) μ_n = HMUN1*(T/300K) + ------HMUN7 α 1 + [N * (T/300K) / HMUN8] $\mu_n = AN1 + AN2 / (1 + (N * AN4) ** AN3)$ Formel für die Eingabeparameter, analog zu (A.13.4): α = HMUN5 * (T/300K) ** HMUN6 Formel für die Eingabeparameter, analog zu (A.13.5): $N = HMUN9 * (n + p - N_{St}) - N_{St}$, wobei n : Elektronenkonzentration (Dimension: cm⁻³) (Dimension: cm⁻³) : Löcherkonzentration р (Dimension: cm⁻³) N_{St} : Störstellenkonzentration Siehe auch MUTYP = Modellauswahl.

```
Fortran: HMUN1
zulässig: 0D0 .LT. HMUN1 .LE. 1D4
Voreinstellung: 88D0 Dimension: cm<sup>2</sup>/(V*s)
Fortran: HMUN3
zulässig: -10D0 .LE. HMUN3 .LE. 0D0
Voreinstellung: -.57D0
Formel: AN1 = HMUN1 * (T/300K) ** HMUN3
Name(A): -: erster Summand der Gleichung (A.13.1), die Beweglichkeit der Elektronen im Modell von N. D. Arora
        beschreibt
Fortran: HMUN2
zulässig: 0D0 .LE. HMUN2 .LE. 1D4
Voreinstellung: 1251.81D0 Dimension: cm<sup>2</sup>/(V*s)
Fortran: HMUN4
zulässig: -10D0 .LE. HMUN4 .LE. 0D0
Voreinstellung: -2.33D0
Formel: AN2 = HMUN2 * (T/300K) ** HMUN4
Name(A): -: Zähler des zweiten Summanden der Gleichung (A.13.1), die die Beweglichkeit der Elektronen im Modell von
        N. D. Arora beschreibt
```

Fortran: HMUN5 zulässig: 0D0 .LE. HMUN5 .LE. 10D0 Voreinstellung: .88D0

Fortran: HMUN6 zulässig: -10D0 .LE. HMUN6 .LE. 10D0 Voreinstellung: -.146D0

Formel: AN3 = HMUN5 * (T/300K) ** HMUN6 # entspricht (A.13.4) # Name(A): α: Exponent in den Gleichungen (A.13.1) und (A.13.2) des Modells der Beweglichkeit von N. D. Arora

Fortran: HMUN7 zulässig: -10D0 .LE. HMUN7 .LE. 0D0 Voreinstellung: -2.4D0

Fortran: HMUN8 zulässig: 0D0 .LT. HMUN8 .LE. 1D30 Voreinstellung: 1.26D17 Dimension: cm⁻³

Formel: AN4 = ((T/300K) ** HMUN7) / HMUN8 Name(A): -: Anteil des Nenners in der Gleichung (A.13.1), genauer derjenige, mit welchem N aus (A.13.5) multipliziert wird

Fortran: HMUN9 zulässig: 0D0 .LE. HMUN9 .LE. 1D0 Voreinstellung: .70D0 Name(A): a: Fit-Parameter der Gleichung (A.13.5)

Mit den oben angegebenen Namen, denen kein Name im Anhang entspricht, wird die Gleichung (A.13.1) für die Programmierung aufgebaut. Siehe dazu Kommentar oben. Mit α , a sind folgende Formeln programmiert: (A.13.1), (A.13.2), (A.13.5)

5.12. Parameter für die Beweglichkeit der Löcher bei niedrigen elektrischen Feldstärken im Modell der Beweglichkeit von N. D. Arora:

Formel für die Eingabeparameter, analog zu (A.13.2):

– UM	ID1*/1		HMUF	P2 * (T/300K)	HMUP4
μ _p – τ πνι		7300K) +	1 + [N * (T/3	HMUP 300K)	7 α / HMUP8]
$\mu_p = AP1$	+ AP2	2 / (1 + (N * AP4)	** AP3)		
Formel f	ür die	Eingabeparameter	r, analog zu (A	.13.4):	
α = HML	JP5 * (T/300K) ** HMUP(6		
Formel f	ür die	Eingabeparameter	, analog zu (A	.13.5):	
N = HMU	JP9 * (n + p - N _{st}) - N _{st} ,			
wobei	n p Nst	: Elektronenkonz : Löcherkonzentra : Störstellenkonze	entration ation entration	(Dimension: (Dimension: (Dimension:	cm ⁻³) cm ⁻³) cm ⁻³)

Siehe auch MUTYP = Modellauswahl.

Fortran: HMUP1 zulässig: 0D0 .LT. HMUP1 .LE. 1D4 Voreinstellung: 54.3D0 Dimension: cm²/(V*s)

Fortran: HMUP3 zulässig: -10D0 .LE. HMUP3 .LE. 0D0 Voreinstellung: -.57D0

Formel: AP1 = HMUP1 * (T/300K) ** HMUP3 Name(A): -: erster Summand der Gleichung (A.13.2), die Beweglichkeit der Löcher im Modell von N. D. Arora beschreibt

Fortran: HMUP2 zulässig: 0D0 .LE. HMUP2 .LE. 1D4 Voreinstellung: 406.97D0 Dimension: cm²/(V*s)

Fortran: HMUP4 zulässig: -10D0 .LE. HMUP4 .LE. 0D0 Voreinstellung: -2.33D0

Formel: AP2 = HMUP2 * (T/300K) ** HMUP4 Name(A): -: Zähler des zweiten Summanden der Gleichung (A.13.2), die die Beweglichkeit der Löcher im Modell von N. D. Arora beschreibt

Fortran: HMUP5 zulässig: 0D0 .LE. HMUP5 .LE. 10D0 Voreinstellung: .88D0

Fortran: HMUP6 zulässig: -10D0 .LE. HMUP6 .LE. 10D0 Voreinstellung: -.146D0

Formel: AP3 = HMUP5 * (T/300K) ** HMUP6 # entspricht (A.13.4) # Name(A): α: Exponent in den Gleichungen (A.13.1) und (A.13.2) des Modells der Beweglichkeit von N. D. Arora

Fortran: HMUP7 zulässig: -10D0 .LE. HMUP7 .LE. 0D0 Voreinstellung: -2.4D0

Fortran: HMUP8 zulässig: 0D0 .LT. HMUP8 .LE. 1D30 Voreinstellung: 2.35D17 Dimension: cm⁻³

Formel: AP4 = ((T/300K) ** HMUP7) / HMUP8 Name(A): -: Anteil des Nenners in der Gleichung (A.13.2), genauer derjenige, durch welchen N aus (A.13.5) geteilt wird

Fortran: HMUP9 zulässig: 0D0 .LE. HMUP9 .LE. 1D0 Voreinstellung: .70D0 Name(A): a: Fit-Parameter der Gleichung (A.13.5)

Mit den oben angegebenen Namen, denen kein Name im Anhang entspricht, wird die Gleichung (A.13.2) für die Programmierung aufgebaut. Siehe dazu Kommentar oben. Mit α , a sind folgende Formeln programmiert: (A.13.1), (A.13.2), (A.13.5)

5.13. Parameter für die Beweglichkeitsgleichung nach Schlangenotto:

Mit HSL1 und HSL2 hat die Gleichung (A.13.13) folgende Form:

HSL5 HSL1 * (T/300 K) $\mu_{c} = \frac{HSL2^{*}(T/K)^{2}}{(n^{*}p)^{1/2} + \ln[1 + \frac{HSL2^{*}(T/K)^{2}}{(n^{*}p)^{1/3}}]$

Hierbei wurde die Notation so weit wie möglich der Notation im Anhang angeglichen.

 μ_{C} : Beweglichkeit bedingt durch die Carrier-Carrier-Streuung

Siehe auch MUTYP = Modellauswahl.

Fortran: HSL1 zulässig: 1D15 .LE. HSL1 .LE. 1D22 Voreinstellung: 14.88D20 Name(A): -: Koeffizient von (T/300 K) ** HSL5 in Gleichung (A.13.13), die den Einfluss der Carrier-Carrier-Streuung auf die Beweglichkeit von Löchern und Elektronen beschreibt.

Fortran: HSL2 zulässig: 1D5 .LE. HSL2 .LE. 1D10 Voreinstellung: 7.87D8 Name(A): -: Koeffizient von (T/K)² in der Gleichung (A.13.13), die den Einfluss der Carrier-Carrier-Streuung auf die Beweglichkeit von Löchern und Elektronen beschreibt.

Mit HSL3 und HSL4 kann der Einfluss der Dotierung auf die Minoritätsbeweglichkeit eingestellt werden.

Gleichung für die Zahl der Störstellen N_{St} bei MUN:

N_{st} = HSL3 * NA + ND + RZ

Gleichung für die Zahl der Störstellen N_{St} bei MUP:

 $N_{St} = NA + HSL4 * ND + RZ$

Sind HSL3 bzw. HSL4 größer 1, dann bedeutet das, dass MUN bzw. MUP bei gleicher Störstellenkonzentration geringer sind. Eine kleinere Minoritätsbeweglichkeit hat einen kleineren Diffusionsstrom in den jeweiligen Emitter zur Folge. Dadurch wird der Emitterwirkungsgrad vergrößert.

Sind HSL3 bzw. HSL4 kleiner 1, dann bedeutet das, dass MUN bzw. MUP bei gleicher Störstellenkonzentration größer sind. Eine größere Minoritätsbeweglichkeit hat einen größeren Diffusionsstrom in den jeweiligen Emitter zur Folge. Dadurch wird der Emitterwirkungsgrad reduziert.

Fortran: HSL4 zulässig: 0D0 .LE. HSL4 .LE. 10D0 Voreinstellung: 1D0 Name(A): -: Koeffizient in der Gleichung (A.13.9), womit der Einfluss der Dotierung (Donatoren) auf die Beweglichkeit MUP eingestellt wird.

Fortran: HSL5 zulässig: -3D0 .LE. HSL5 .LE. 3D0 Voreinstellung: -.52d0 Name(A): -: Koeffizient von (T/300 K) ** HSL5 in Gleichung (A.13.13), die den Einfluss der Temperatur bei der Carrier-Carrier-Streuung beschreibt.

5.14. Parameter für die Elektronen bei der Augerrekombination:

Es wurde eine zu (A.10.3) analoge Formel programmiert:

ANAUG = AN0 + ANTK1 * (T/K) + ANTK2 * $(T/K)^2$

Hierbei entspricht der Fortranname ANAUG dem Namen an im Anhang. an: Rekombinationsparameter der Augerrekombination für Elektronen

Fortran: AN0 zulässig: 0D0 .LE. AN0 .LE. 1D-29 Voreinstellung: .67D-31 Dimension: cm⁶/s Name(A): -: Augerkoeffizient bei T = 0 K für Elektronen

Fortran: ANTK1 zulässig: 0D0 .LE. ANTK1 .LE. 1D-32 Voreinstellung: 8.16D-34 Dimension: cm⁶/(s*K) Name(A): -: Koeffizient des linearen Temperaturanteils bei der Augerrekombination für Elektronen

Fortran: ANTK2 zulässig: -1D-35 .LE. ANTK2 .LE. 1D-35 Voreinstellung: -2.44D-37 Dimension: cm⁶/(s*K²) Name(A): -: Koeffizient des quadratischen Temperaturanteils bei der Augerrekombination für Elektronen

Mit den Fortrannamen AN0, ANTK1 und ANTK2 wird eine zu der Formel (A.10.3) analoge Formel programmiert. Siehe dazu Kommentar oben. Mit a_n ist (A.10.1) programmiert.

Siehe auch den logischen Parameter LOGAUG zum Ein- und Ausschalten dieses Modells.

5.15. Parameter für die Löcher bei der Augerrekombination:

Es wurde eine zu (A.10.2) analoge Formel programmiert:

APAUG = AP0 + APTK1 * (T/K) + APTK2 * $(T/K)^2$

Hierbei entspricht der Fortranname APAUG dem Namen a_p im Anhang. a_p : Rekombinationsparameter der Augerrekombination für Löcher Fortran: AP0 zulässig: 0D0 .LE. AP0 .LE. 1D-29 Voreinstellung: .72D-31 Dimension: cm⁶/s Name(A): -: Augerkoeffizient bei T = 0 K für Löcher

Fortran: APTK1 zulässig: 0D0 .LE. APTK1 .LE. 1D-32 Voreinstellung: .15D-34 Dimension: cm⁶/(s*K) Name(A): -: Koeffizient des linearen Temperaturanteils bei der Augerrekombination für Löcher

Fortran: APTK2 zulässig: -1D-35 .LE. APTK2 .LE. 1D-35 Voreinstellung: 2.92D-37 Dimension: cm⁶/(s*K²) Name(A): -: Koeffizient des quadratischen Temperaturanteils bei der Augerrekombination für Löcher

Mit den Fortrannamen AP0, APTK1 und APTK2 wird eine zu der Formel (A.10.2) analoge Formel programmiert. Siehe dazu Kommentar oben. Mit a_p ist (A.10.1) programmiert.

Siehe auch den logischen Parameter LOGAUG zum Ein- und Ausschalten dieses Modells.

5.16. Parameter der Stoßionisation für Elektronen:

Mit ALNMA, ALNEX, ALNTK hat die Formel (A.12.6) folgende Form:

ALNEX + ALNTK * (T/K - 300) α_n = ALNMA * exp[------] cm⁻¹ |E| cm/V

 α_n : Stoßionisationsmultiplikator für Elektronen

Fortran: ALNMA zulässig: 1D5 .LE. ALNMA .LE. 1D7 Voreinstellung: 7.03D5 Dimension: cm⁻¹

Fortran: ALNEX zulässig: -1D7 .LE. ALNEX .LE. -1D5 Voreinstellung: -1.231D6 Dimension: V/cm

Fortran: ALNTK zulässig: -1D5 .LE. ALNTK .LE. 1D5 Voreinstellung: -1.1D3 Dimension: V/(cm*K)

Formel: ALN = ALNMA1 * EXP((ALNEX + ALNTK * (T/K-300)) / |E|) # hierbei entspricht ALNMA1 der normierten und durch e geteilten Variablen ALNMA, wobei e die Elementarladung ist und E die elektrische Feldstärke # Name(A): α_n: (für ALN/e) Stoßionisationsmultiplikator für Elektronen

Mit α_n sind folgende Formeln programmiert: (A.12.1), (A.12.6)

Siehe auch den logischen Parameter AVA zum Ein- und Ausschalten dieses Modells.

5.17. Parameter der Stoßionisation für Löcher:

Mit ALPMA, ALPEX, ALPTK hat die Formel (A.12.7) folgende Form:

ALPEX + ALPTK * (T/K - 300) α_p = ALPMA * exp[------] cm⁻¹ |E| cm/V

α_p: Stoßionisationsmultiplikator für Löcher

Fortran: ALPMA zulässig: 1D5 .LE. ALPMA .LE. 1D7 Voreinstellung: 15.82D5 Dimension: cm⁻¹

Fortran: ALPEX zulässig: -1D7 .LE. ALPEX .LE. -1D5 Voreinstellung: -2.036D6 Dimension: V/cm

Fortran: ALPTK zulässig: -1D5 .LE. ALPTK .LE. 1D5 Voreinstellung: -1.1D3 Dimension: V/(cm*K)

Formel: ALP = ALPMA1 * EXP((ALPEX + ALPTK * (T/K-300)) / A) # hierbei entspricht ALPMA1 der normierten und durch e geteilten Variablen ALPMA, wobei e die Elementarladung ist und E die elektrische Feldstärke # Name(A): α_p: (für ALP/e) Stoßionisationsmultiplikator für Löcher

Mit α_p sind folgende Formeln programmiert: (A.12.1), (A.12.7)

Siehe auch den logischen Parameter AVA zum Ein- und Ausschalten dieses Modells.

5.18. Mögliche Varianten bei der Festlegung der Dotierungsprofile für Akzeptoren und Donatoren:

Die für die Bauelementesimulation benötigten Dotierungsprofile setzt das Programm aus den Eingabewerten von fünf Teildotierungsprofilen der Donatoren und fünf Teildotierungsprofilen der Akzeptoren, zusammen. Die Teildotierungsprofile werden im Folgenden beschrieben:

Für alle Berechnungen mit Akzeptor- und Donatorkonzentrationen benutzt das Programm nur die Konzentrationen an den Hauptgitterpunkten. Deswegen sollte der Benutzer, um die gewünschten Effekte zu erzielen, berücksichtigen, wie das Programm die Diskretisierung der Teildotierungsprofile vornimmt. Dazu folgende Anmerkungen:

 Vier Teildotierungsprofile werden wahlweise je durch eine Gauss-, erfc-, exp-, lineare oder konstante Funktion, Letztere wird als STEP bezeichnet, beschrieben. Die Werte der gewählten Funktion an den Hauptgitterpunkten sind die Dotierungskonzentrationswerte, die das Programm dem jeweiligen Hauptgitterpunkt zuweist.

Die Akzeptorprofile P1 und P2 werden hierbei für die linke Seite der Diode definiert. Die Akzeptorprofile P3 und P4 werden hierbei für die rechte Seite der Diode definiert.

Die Donatorprofile N1 und N2 werden hierbei für die rechte Seite der Diode definiert. Die Donatorprofile N3 und N4 werden hierbei für die linke Seite der Diode definiert.

2. Das fünfte Teildotierungsprofil, das wir als frei Wählbares bezeichnen, legt der Benutzer durch die Wahl von Stützstellen und zugehörigen Konzentrationen fest. Diese interpoliert das Programm linear und weist den Hauptgitterpunkten die Werte der so bestimmten Funktion am jeweiligen Hauptgitterpunkt zu.

Die Teilprofilwerte summiert das Programm zur Dotierungskonzentration am jeweiligen Hauptgitterpunkt auf.

Die Zusammensetzung des Dotierungsprofils aus Teilprofilen bietet dem Benutzer die Möglichkeit, verschiedene physikalische Effekte, die durch das Herstellungsverfahren des Bauelementes bedingt sind, getrennt zu berücksichtigen. Zur Bestimmung der durch Option vorgesehenen Anteile der Dotierungsprofile überlagert das Programm die p-Profile, die die Dotierungskonzentration der Akzeptoren beschreiben, und die n-Profile, die die Dotierungskonzentration der Donatoren beschreiben. Die Profile P1 und N1 missen immer angegeben werden und positiv sein. Die Profile N2, N3, N4, P2, P3 und P4 können unberücksichtigt bleiben. Für die Profile P2, P4 N2 und N4 sind auch negative Eingabewerte zulässig.

Auf Seite 118 sind Beispiele vom p⁺-Profil und n⁺-Profil angegeben worden.

5.19. Parameter für die Wahl der Profiltypen bei den als Option vorgesehenen Profilen:

PROFN1, PROFN2, PROFN3, PROFN4, PROFP1, PROFP2, PROFP3 und PROFP4 sind die Parameter für die Wahl der vorgesehenen Profiltypen. Hierbei ist PROFN1 der Profiltyp für das N1-Profil, PROFN2 der Profiltyp für das N2-Profil usw. Die Profile P1, P2, N3 und N4 werden ausgehend von Hauptgitterpunkt 1 berechnet. Die Profile N1, N2, P3 und P4 werden ausgehend von Hauptgitterpunkt NMAX berechnet.

Bei allen Profilen bedeutet Belegung des PROFN1, PROFN2 usw.

- Parameters mit
- 1: exp Funktion 2: Gauss - Funktion
- 3: erfc Funktion
- 4: lineare Funktion
- 5: STEP (konstant)

Mit dieser Funktion wird der Profilverlauf, ausgehend vom jeweiligen Hauptgitterpunkt in Richtung Bauelementmitte berechnet wird.

Fortran: PROFN1 zulässig: PROFN1 = 1,2,3,4,5 Voreinstellung: 3 Fortran: PROFN2 zulässig: PROFN2 = 1,2,3,4,5 Voreinstellung: 3 Fortran: PROFN3 zulässig: PROFN3 = 1,2,3,4,5

zulässig: PROFN3 = 1,2,3,4,5 Voreinstellung: 3

Fortran: PROFN4 zulässig: PROFN4 = 1,2,3,4,5 Voreinstellung: 3

Fortran: PROFP1 zulässig: PROFP1 = 1,2,3,4,5 Voreinstellung: 3

Fortran: PROFP2 zulässig: PROFP2 = 1,2,3,4,5 Voreinstellung: 3

Fortran: PROFP3 zulässig: PROFP3 = 1,2,3,4,5 Voreinstellung: 3

Fortran: PROFP4 zulässig: PROFP4 = 1,2,3,4,5 Voreinstellung: 3

Für die Berechnung des Profilverlaufs der nicht frei wählbaren Dotierungsprofile, benötigt das Programm die Donatorbzw. Akzeptorkonzentration von zwei Stützstellen. Falls allerdings der Profiltyp = 5 ist, reicht eine Stützstelle. In diesem Fall wertet das Programm auch nur den Parameter für den Maximalwert des Profils aus, der jeweils auf MAX endet. Eine Stützstelle, der Hauptgitterpunkt NMAX für die Profile N1, N2, P3 und P4 bzw. der Hauptgitterpunkt 1 für die Profile P1, P2, N3 und N4 ist vom Programm festgelegt. An dieser Stützstelle ist der Maximalwert des jeweiligen Profils definiert. Den Ort der zweiten Stützstelle kann der Benutzer frei + wählen. Hierbei sollte er allerdings darauf achten, dass an dieser Stützstelle eine Konzentration erreicht wird, die in der Größenordnung der Grunddotierung des simulierten Bauelementes liegt. Zum Abgleich der p- und n-Profile an dem tatsächlich vorliegenden Profilverlauf kann der Benutzer die Konzentration an dem gewählten Stützpunkt variieren. Diese Konzentrationen haben die Fortrannamen NDMIN1, NDMIN2, NDMIN3, NDMIN4, NAMIN1, NAMIN2, NAMIN3 und NAMIN4.

Die Lage der Stützstellen wird mittels der Fortranvariablen DN1, DN2, DN3, DN4, DP1, DP2, DP3 und DP4 festgelegt. DP1, DP2, DN3 und DN4 werden ab Hauptgitterpunkt 1 gerechnet.

DN1, DN2, DP3 und DP4 werden ab Hauptgitterpunkt NMAX gerechnet.

5.20. Parameter für den Konzentrationsverlauf der n-Profile mit fest vorgegebener Funktion:

Um für die Simulation nur physikalisch sinnvolle (d. h. insgesamt positive) n-Profile zuzulassen, überprüft das Programm nach Berechnung der Donatordotierungskonzentrationen der n-Profile an den Hauptgitterpunkten, ob die Summe der n-Profile dort positiv (GE.0D0) ist.

Sollte dies nicht der Fall sein, bricht das Programm mit der Meldung "Donatorkonzentration ist negativ" ab. Wünscht der Benutzer von der Möglichkeit der als Option vorgesehenen n-Profile keinen Gebrauch zu machen, muss er z. B. NDMAX2 = NDMIN2 = 0D0 usw. wählen. Es wird ebenfalls überprüft, ob die Eingaben sinnvolle Profile ergeben, sonst werden die entsprechenden Fehlermeldungen ausgegeben.

Durch Eingabe NDMAX1 = NDMIN1 = 0D0 bleibt das N1-Profil unberücksichtigt.

Fortran: NDMAX1 zulässig: NDMIN1 .LE. NDMAX1 .LE. 1D23 Voreinstellung: 7.50D19 Dimension: cm⁻³ Name(A): -: maximale Donatorkonzentration der Hauptgitterpunkte des N1-Profils, wird am Hauptgitterpunkt NMAX erreicht.

Fortran: NDMIN1 zulässig: 0D0 .LE. NDMIN1 .LE. NDMAX1 !!! bei PROFN1 = 5 ist die Eingabe wirkungslos, für PROFN1= 3 gilt zusätzlich 1D-8 * NDMAX1 .LE. NDMIN1 !!! Voreinstellung: 7.70D13 Dimension: cm⁻³ Name(A): -: Donatorkonzentration an der zweiten Stützstelle des N1-Profils

Fortran: DN1
zulässig: 0D0 .LT. DN1
DN1 sollte so gewählt werden, dass die Dotierungskonzentration an der zweiten Stützstelle in der Größenordnung der Grunddotierung liegt
Voreinstellung: 60.000D-4 Dimension: cm
Name(A): -: Abstand der zweiten Stützstelle für N1-Profilverlauf vom Hauptgitterpunkt NMAX, DN1 wird auch zur Ausgabesteuerung verwendet, vgl. Abschnitt 7. Fortran: NDMAX2 zulässig: ABS(NDMAX2) .LE. 1D23 , SIGN(NDMAX2) = SIGN(NDMIN2) Voreinstellung: 0D0 Dimension: cm⁻³ Name(A): -: betragsmäßig größte Donatorkonzentration der Hauptgitterpunkte des N2-Profils, wird am Hauptgitterpunkt NMAX erreicht.

Durch Eingabe NDMAX2 = NDMIN2 = 0D0 bleibt das N2-Profil unberücksichtigt.

Fortran: NDMIN2 zulässig: 0D0 .LE. ABS(NDMIN2) .LE. ABS(NDMAX2) , SIGN(NDMIN2) = SIGN(NDMAX2) !! bei PROFN2 = 5 ist die Eingabe wirkungslos, für PROFN2 = 3 gilt zusätzlich 1D-8 * ABS(NDMAX2) .LE. ABS(NDMIN2) !!! Voreinstellung: 0D0 Dimension: cm⁻³ Name(A): -: Donatorkonzentration an der zweiten Stützstelle des N2-Profils

Fortran: DN2
zulässig: 0D0 .LT. DN2
DN2 sollte so gewählt werden, dass die Dotierungskonzentration an der zweiten Stützstelle in der Größenordnung der Grunddotierung liegt
Voreinstellung: 1D-30 Dimension: cm
Name(A): -: Abstand der zweiten Stützstelle für N2-Profilverlauf vom Hauptgitterpunkt NMAX, DN2 wird auch zur Ausgabesteuerung verwendet, vgl. Abschnitt 7.

Durch Eingabe NDMAX3 = NDMIN3 = 0D0 bleibt das N3-Profil unberücksichtigt.

Fortran: NDMAX3 zulässig: NDMIN3 .LT. NDMAX3 .LE. 1D23 Voreinstellung: 0D0 Dimension: cm⁻³ Name(A): -: maximale Donatorkonzentration der Hauptgitterpunkte des N3-Profils, wird am Hauptgitterpunkt 1 erreicht

Fortran: NDMIN3 zulässig: 0D0 .LT. NDMIN3 .LT. NDMAX3 !! bei PROFN3 = 5 ist die Eingabe wirkungslos, für PROFN3 = 3 gilt zusätzlich 1D-8 * NDMAX1 .LE. NDMIN1 !!! Voreinstellung: 0D0 Dimension: cm⁻³ Name(A): -: Donatorkonzentration an der zweiten Stützstelle des N3-Profils

Fortran: DN3
zulässig: 0D0 .LT. DN3
DN3 sollte so gewählt werden, dass die Dotierungskonzentration an der zweiten Stützstelle in der Größenordnung der Grunddotierung liegt
Voreinstellung: 1D-30 Dimension: cm
Name(A): -: Abstand der zweiten Stützstelle für N3-Profilverlauf vom Hauptgitterpunkt NMAX,

Fortran: NDMAX4 zulässig: ABS(NDMAX4) .LE. 1D23 , SIGN(NDMAX4) = SIGN(NDMIN4) Voreinstellung: 0D0 Dimension: cm⁻³ Name(A): -: betragsmäßig größte Donatorkonzentration der Hauptgitterpunkte des N4-Profils, wird am Hauptgitterpunkt 1 erreicht.

Durch Eingabe NDMAX4 = NDMIN4 = 0D0 bleibt das N4-Profil unberücksichtigt.

Fortran: NDMIN4 zulässig: 0D0 .LE. ABS(NDMIN4) .LE. ABS(NDMAX4) , SIGN(NDMIN4) = SIGN(NDMAX4) !! bei PROFN4 = 5 ist die Eingabe wirkungslos, für PROFN4 = 3 gilt zusätzlich 1D-8 * ABS(NDMAX4) .LE. ABS(NDMIN4) !! Voreinstellung: 0D0 Dimension: cm⁻³ Name(A): -: Donatorkonzentration an der zweiten Stützstelle des N4-Profils

Fortran: DN4 zulässig: 0D0 .LT. DN4 # DN4 sollte so gewählt werden, dass die Dotierungskonzentration an der zweiten Stützstelle in der Größenordnung der Grunddotierung liegt #

Voreinstellung: 1D-30 Dimension: cm

Name(A): -: Abstand der zweiten Stützstelle für N4-Profilverlauf vom Hauptgitterpunkt 1.

5.21. Parameter für den Konzentrationsverlauf der p-Profile: mit fest vorgegebener Funktion:

Um für die Simulation nur physikalisch sinnvolle (d. h. insgesamt positive) p-Profile zuzulassen, überprüft das Programm nach Berechnung der Akzeptordotierungskonzentrationen der p-Profile an den Hauptgitterpunkten, ob die Summe der p-Profile dort positiv (.GE. 0D0) ist. Sollte dies nicht der Fall sein, bricht das Programm mit der Meldung "Akzeptorkonzentration ist negativ" ab. Wünscht der Benutzer von der Möglichkeit der als Option vorgesehenen p-Profile keinen Gebrauch zu machen, muss er z. B. NAMAX2 = NAMIN2 = 0D0 usw. wählen. Es wird ebenfalls überprüft, ob die Eingaben sinnvolle Profile ergeben, sonst werden die entsprechenden Fehlermeldungen ausgegeben.

Durch Eingabe NAMAX1 = NAMIN1 = 0D0 bleibt das P1-Profil unberücksichtigt.

Fortran: NAMAX1 zulässig: NAMIN1 .LE. NAMAX1 .LE. 1D23 Voreinstellung: 2.20D19 Dimension: cm⁻³ Name(A): -: maximale Akzeptorkonzentration der Hauptgitterpunkte des P1-Profils, wird am Hauptgitterpunkt 1 erreicht

Fortran: NAMIN1 zulässig: 0D0 .LE. NAMIN1 .LE. NAMAX1 !!! bei PROFP1 = 5 ist die Eingabe wirkungslos,

für PROFP1= 3 gilt zusätzlich 1D-8

* NAMAX1 .LE. NAMIN1 !!! Voreinstellung: 7.70D13 Dimension: cm⁻³ Name(A): -: Akzeptorkonzentration an der zweiten Stützstelle des P1-Profils

Fortran: DP1
zulässig: 0D0 .LT. DP1
DP1 sollte so gewählt werden, dass die Dotierungskonzentration an der zweiten Stützstelle in der Größenordnung der Grunddotierung liegt
Voreinstellung: 55.800D-4 Dimension: cm
Name(A): -: Abstand der zweiten Stützstelle für P1-Profilverlauf vom Hauptgitterpunkt 1, DP1 wird auch zur Ausgabesteuerung verwendet, vgl. Abschnitt 7.

Fortran: NAMAX2 zulässig: ABS(NAMAX2) .LE. 1D23 , SIGN(NAMAX2)=SIGN(NAMIN2) Voreinstellung: 0D0 Dimension: cm⁻³

Name(A): -: betragsmäßig größte Akzeptorkonzentration der Hauptgitterpunkte des P2-Profils, wird am Hauptgitterpunkt 1 erreicht.

Durch Eingabe NAMAX2 = NAMIN2 = 0D0 bleibt das P2-Profil unberücksichtigt.

Fortran: NAMIN2
zulässig: 0D0 .LE. ABS(NAMIN2) .LE. ABS(NAMAX2) , SIGN(NAMIN2) = SIGN(NAMAX2) .!!! bei PROFP2= 5 ist die Eingabe wirkungslos, für PROFP2 = 3 gilt zusätzlich 1D-8 * ABS(NAMAX2) .LE. ABS(NAMIN2) !!!
Voreinstellung: 0D0 Dimension: cm⁻³
Name(A): -: Akzeptorkonzentration an der zweiten Stützstelle des P2-Profils
Fortran: DP2 zulässig: 0D0 .LT. DP2 # DP2 sollte so gewählt werden, dass die Dotierungskonzentration an der zweiten Stützstelle in der Größenordnung der Grunddotierung liegt #
Voreinstellung: 1D-30 Dimension: cm
Name(A): -: Abstand der zweiten Stützstelle für P2-Profilverlauf vom Hauptgitterpunkt 1, DP2 wird auch zur Ausgabesteuerung verwendet, vgl. Abschnitt 7.

Fortran: NAMAX3 zulässig: NAMIN3 .LE. NAMAX3 .LE. 1D23 Voreinstellung: 0D0 Dimension: cm⁻³ Name(A): -: betragsmäßig größte Akzeptorkonzentration der Hauptgitterpunkte des P3-Profils, wird am Hauptgitterpunkt NMAX erreicht.

Durch Eingabe NAMAX3 = NAMIN3 = 0D0 bleibt das P3-Profil unberücksichtigt.

Fortran: NAMIN3

zulässig: 0D0 .LE. NAMIN3 .LE. NAMAX3

!!! bei PROFP3= 5 ist die Eingabe wirkungslos,
für PROFP3= 3 gilt zusätzlich 1D-8 * NAMAX3 .LE. NAMIN3 !!!

Voreinstellung: 0D0 Dimension: cm⁻³
Name(A): -: Akzeptorkonzentration an der zweiten Stützstelle des P3-Profils

Fortran: DP3

zulässig: 0D0 .LT. DP3
DP3 sollte so gewählt werden, dass die Dotierungskonzentration an der zweiten Stützstelle in der Größenordnung der Grunddotierung liegt

Name(A): -: Abstand der zweiten Stützstelle für P3-Profilverlauf vom Hauptgitterpunkt NMAX,

Fortran: NAMAX4 zulässig: ABS(NAMAX4) .LE. 1D23 , SIGN(NAMAX4)=SIGN(NAMIN4) Voreinstellung: 0D0 Dimension: cm⁻³ Name(A): -: betragsmäßig größte Akzeptorkonzentration der Hauptgitterpunkte des P4-Profils, wird am Hauptgitterpunkt NMAX erreicht.

Durch Eingabe NAMAX4 = NAMIN4 = 0D0 bleibt das P4-Profil unberücksichtigt.

Fortran: NAMIN4 zulässig: 0D0 .LE. ABS(NAMIN4) .LE. ABS(NAMAX4) , SIGN(NAMIN4) = SIGN(NAMAX4) !!! bei PROFP4 = 5 ist die Eingabe wirkungslos, für PROFP4 = 3 gilt zusätzlich 1D-8 * ABS(NAMAX4) .LE. ABS(NAMIN4) !!! Voreinstellung: 0D0 Dimension: cm⁻³ Name(A): -: Akzeptorkonzentration an der zweiten Stützstelle des P4-Profils

Fortran: DP4
zulässig: 0D0 .LT. DP4
DP4 sollte so gewählt werden, dass die Dotierungskonzentration an der zweiten Stützstelle in der Größenordnung der Grunddotierung liegt
Voreinstellung: 1D-30 Dimension: cm
Name(A): -: Abstand der zweiten Stützstelle für P4-Profilverlauf vom Hauptgitterpunkt NMAX.

5.22. Parameter für die Eingabe des frei wählbaren Profils:

Für die frei wählbaren Profile müssen folgende Daten eingegeben werden: der Abstand zu dem beim Zwischengitterpunkt 1 liegenden Metall-Silizium-Übergang für alle Stützstellen und der Dotierungskonzentration an diesen Stützstellen. Für Akzeptoren und Donatoren erfolgt die Wahl der Stützstellen separat.

Das Programm interpoliert zwischen den Dotierungsstützstellen linear. Daher geht in die Berechnung der Dotierungskonzentrationen für die Hauptgitterpunkte 2 bis NMAX-1 jeweils nur die dem jeweiligen Hauptgitterpunkt links und rechts nächstliegende Dotierungsstützstelle ein. Aus diesem Grund sollte die Eingabe von mehr als zwei Dotierungsstützstellen zwischen zwei aufeinanderfolgenden Hauptgitterpunkten vermieden werden. Um zu gewährleisten, dass der Benutzer dies nicht außer Acht lässt, wurde die zulässige Zahl der Dotierungsstützstellen auf den Maximalwert NMAX, die Anzahl der Hauptgitterpunkte, begrenzt.

Für die Hauptgitterpunkte 1 und NMAX wird allerdings die Dotierungskonzentration folgendermaßen bestimmt: Dem Hauptgitterpunkt 1 wird die erste eingegebene Dotierungskonzentration, unabhängig von der Lage der ersten eingegebenen Stützstelle, zugewiesen. Der eingegebene Parameter für den Abstand der ersten Stützstelle zum Zwischengitterpunkt 1 wird durch dx überschrieben (dx₁ wurde in Abschnitt 5.8 erklärt).

Dem Hauptgitterpunkt NMAX wird die letzte eingegebene Dotierungskonzentration, unabhängig von der Lage der letzten eingegebenen Stützstelle, zugewiesen. Der eingegebene Parameter für den Abstand der letzten Stützstelle zum Zwischengitterpunkt 1 wird durch den Abstand des Hauptgitterpunktes NMAX zum Zwischengitterpunkt 1 überschrieben.

Optionen bei der Eingabe des frei wählbaren Profils

- 1. Eingabe nur je einer Stützstelle und einer Dotierungskonzentration bewirkt konstantes, frei wählbares Profil. Dieses Profil kann auch null sein.
- Eingabe von Konzentrationsspringen durch doppelte Angabe der Lage einer Stützstelle bei verschiedenen Konzentrationsangaben. In diesem Fall wird für die lineare Interpolation nach rechts der zweite Konzentrationswert und für die lineare Interpolation nach links der erste Konzentrationswert verwendet.

5.23. Parameter für das frei wählbare Profil der Donatoren:

Die Länge der Felder DONX und DON0 bestimmt das Programm automatisch anhand der eingegebenen Feldkomponenten. Nach jedem Laden des Simulators und vor der Belegung mit Werten, zu denen auch die Voreinstellungen gehören, sind die Felder DONX und DON0 mit 0D0 besetzt.

Wünscht der Benutzer kein frei wählbares Profil einzugeben, muss er DON0 = DONX = 0D0 eingeben.

IDON ist die bei der Eingabe ermittelte aktuelle Feldgröße. Falls DONX(j) .EQ. 0D0 und

DON0(j) .NE. 0D0 für 2 .LE. j .LE. IDON meldet das Programm "DONX ZU KLEIN". Wenn diese Meldung auftritt, kann es sein, dass nicht, wie verlangt, eine gleiche Anzahl von Stützstellen und Konzentrationen eingegeben wurden. Allerdings wird diese Meldung auch ausgegeben, falls DONX(j+1) .LT. DONX(j) für 1 .LE. j .LT. IDON.

Falls DONX(j) .NE. 0D0 und DON0(j) .EQ. 0D0 für 2 .LE. j .LE. IDON geht das Programm von einer gewünschten Eingabe aus. Da nicht belegte Feldelemente nach dem Laden des Simulators mit 0D0 vorbelegt sind, erfährt der Benutzer in diesem Fall nicht, ob er zu wenig Konzentrationen eingegeben hat.

Daher muss der Benutzer unbedingt selbst kontrollieren, dass er für DONX und DON0 Felder mit gleicher Länge eingibt.

Es ist zu beachten, dass die maximale Feldgröße durch den Fortran-Parameter GR0 = 1000 begrenzt ist. Wird ein größeres Feld eingegeben, so werden die zu viel eingegebene Daten ignoriert. Eine Warnung wird ausgegeben.

Fortran: DONX zulässig: dx1 .LE. DONX(j) für 2 .EQ. j. EQ. IDON , dx1 .LE. DONX(j) .LE. DONX(j+1) für 2 .LE. j .LT. IDON .LE. NMAX, DONX(IDON) .LE. X(NMAX) # Hierbei ist X(NMAX) der Abstand des Hauptgitterpunktes NMAX zum Zwischengitterpunkt 1. DONX ist ein Feld der LÄNGE 1 .LE. IDON .LE. NMAX . Die Feldgrenzen sind variabel und richten sich nach den Eingabeelementen. (vgl. Kommentar oben) # Voreinstellung: 0D0 Dimension: cm

Fortran: DON0 zulässig: 0D0 .LE. DON0 .LE. 1D23 # DON0 ist ein Feld mit LÄNGE 1 .LE. IDON .LE. NMAX . Die zulässigen Werte sind komponentenweise zu verstehen # Voreinstellung: DON0(1) = 7.70D13 Dimension: cm⁻³

5.24. Parameter für das frei wählbare Profil der Akzeptoren:

Die Länge der Felder AKZX und AKZ0 bestimmt das Programm automatisch anhand der eingegebenen Feldkomponenten. Nach jedem Laden des Simulators, und vor der Belegung mit Werten, zu denen auch die Voreinstellungen gehören, sind die Felder AKZX und AKZ0 mit 0D0 besetzt.

Wünscht der Benutzer kein frei wählbares Profil einzugeben, muss er nur AKZ0 = AKZX = 0D0 oder nichts eingeben.

IAKZ ist die bei der Eingabe ermittelte aktuelle Feldgröße. Falls AKZX(j) .EQ. 0D0 und AKZ0(j) .NE. 0D0 für 2 .LE. j .LE. IAKZ meldet das Programm "AKZX ZU KLEIN". Wenn diese Meldung auftritt, kann es sein, dass nicht, wie verlangt, eine gleiche Anzahl von Stützstellen und Konzentrationen eingegeben wurden. Allerdings wird diese Meldung auch ausgegeben, falls AKZX(j+1) .LT. AKZX(j) für 1 .LE. j .LT. IAKZ.

Falls AKZX(j) .NE. 0D0 und AKZ0(j) .EQ. 0D0 für 2 .LE. j .LE. IAKZ geht das Programm von einer gewünschten Eingabe aus. Da nicht belegte Feldelemente nach dem Laden des Simulators mit 0D0 vorbelegt sind, erfährt der Benutzer in diesem Fall nicht, ob er zu wenig Konzentrationen eingegeben hat.

Daher muss der Benutzer unbedingt selbst kontrollieren, dass er für AKZX und AKZ0 Felder mit gleicher Länge eingibt.

Es ist zu beachten, dass die maximale Feldgröße durch den Fortran-Parameter GR0 = 1000 begrenzt ist. Wird ein größeres Feld eingegeben, so werden die zu viel eingegebene Daten ignoriert. Eine Warnung wird ausgegeben.

Fortran: AKZX zulässig: dx₁ .LE. AKZX(j) für 2 .EQ. J .EQ. IAKZ , dx₁ .LE. AKZX(j) .LE. AKZX(j+1) für

AKZX(IAKZ) .LE. X(NMAX)

2 .LE. j .LT. IAKZ .LE. NMAX,

 # Hierbei ist X(NMAX) der Abstand des Hauptgitterpunktes NMAX zum Zwischengitterpunkt 1 AKZX ist ein Feld der LÄNGE 1 .LE. IAKZ .LE. NMAX . Die Feldgrenzen sind variabel und richten sich nach den Eingabeelementen. (vgl. Kommentar oben) #
 Voreinstellung: 0D0 Dimension: cm

Fortran: AKZ0 zulässig: 0D0 .LE. AKZ0 .LE. 1D23 # AKZ0 ist ein Feld mit LÄNGE 1 .LE. IAKZ .LE. NMAX . Die zulässigen Werte sind komponentenweise zu verstehen # Voreinstellung: 0D0 Dimension: cm⁻³

5.25. Parameter für die Eingabe des Profils der Rekombinationszentren:

Für das Profil der Rekombinationszentren missen folgende Daten eingeben werden: der Abstand zu dem beim Zwischengitterpunkt 1 liegenden Metall-Silizium-Übergang für alle Stützstellen und die Dotierungskonzentration an diesen Stützstellen. Das Programm interpoliert zwischen den Dotierungsstützstellen linear. Daher geht in die Berechnung der Dotierungskonzentrationen für die Hauptgitterpunkte 2 bis NMAX-1 jeweils nur die dem jeweiligen Hauptgitterpunkt links und rechts nächstliegende Dotierungsstützstelle ein.

Aus diesem Grund sollte die Eingabe von mehr als zwei Dotierungsstützstellen zwischen zwei aufeinanderfolgenden Hauptgitterpunkten vermieden werden. Um zu gewährleisten, dass der Benutzer dies nicht außer Acht lässt, wurde die zulässige Zahl der Dotierungsstützstellen auf den Maximalwert NMAX, die Anzahl der Hauptgitterpunkte, begrenzt. Für die Hauptgitterpunkte 1 und NMAX wird allerdings die Dotierungskonzentration folgendermaßen bestimmt: Dem Hauptgitterpunkt 1 wird die erste eingegebene Dotierungskonzentration, unabhängig von der Lage der ersten eingegebenen Stützstelle, zugewiesen. Der eingegebene Parameter für den Abstand der ersten Stützstelle zu dem Zwischengitterpunkt 1 wird durch dx₁ überschrieben (dx₁ wurde in Abschnitt 5.8 erklärt). Dem Hauptgitterpunkt NMAX wird die letzte eingegebene Dotierungskonzentration unabhängig von der Lage der letzten eingegebenen Stützstelle zugewiesen. Der eingegebene Parameter für den Abstand der letzten stützstelle zum Zwischengitterpunkt 1 wird durch durch Abstand des Hauptgitterpunktes NMAX zum Zwischengitterpunkt 1 überschrieben.

Optionen bei der Eingabe des Profils der Rekombinationszentren

- 1. Eingabe nur je einer Stützstelle und einer Dotierungskonzentration bewirkt ein konstantes Profil der Rekombinationszentren. Dieses Profil kann auch null sein.
- 2. Eingabe von Konzentrationsspringen durch doppelte Angabe der Lage einer Stützstelle bei verschiedenen Konzentrationsangaben. In diesem Fall wird für die lineare Interpolation nach rechts der zweite Konzentrationswert, und für die lineare Interpolation nach links der erste Konzentrationswert verwendet.

5.26. Parameter für das Profil der Rekombinationszentren:

Die Länge der Felder NRZX und NRZ0 bestimmt das Programm automatisch anhand der eingegebenen Feldkomponenten. Nach jedem Laden des Simulators und vor Belegung mit Werten, zu denen auch die Voreinstellungen gehören, sind die Felder NRZX und NRZ0 mit 0D0 besetzt.

Wünscht der Benutzer kein Profil der Rekombinationszentren einzugeben, muss er nur NRZ0 = NRZX = 0D0 eingeben.

INRZ ist die bei der Eingabe ermittelte aktuelle Feldgröße. Falls NRZX(j) .EQ. 0D0 und NRZ0(j) .NE. 0D0 für 2 .LE. j .LE. INRZ meldet das Programm "NRZX ZU KLEIN". Wenn diese Meldung auftritt, kann es sein, dass nicht, wie verlangt, eine gleiche Anzahl von Stützstellen und Konzentrationen eingegeben wurden. Allerdings wird diese Meldung auch ausgegeben, falls NRZX(j+1) .LT. NRZX(j) für 1 .LE. j .LT. INRZ .

Falls NRZX(j) .NE. 0D0 und NRZ0(j) .EQ. 0D0 für 2 .LE. j .LE. INRZ geht das Programm von einer gewünschten Eingabe aus. Da nicht belegte Feldelemente nach dem Laden des Simulators mit 0D0 vorbelegt sind, erfährt der Benutzer in diesem Fall nicht, ob er zu wenig Konzentrationen eingegeben hat.

Daher muss der Benutzer unbedingt selbst kontrollieren, dass er für NRZX und NRZ0 Felder mit gleicher Länge eingibt.

Es ist zu beachten, dass die maximale Feldgröße durch den Fortran-Parameter GR0 = 1000 begrenzt ist. Wird ein größeres Feld eingegeben, so werden die zu viel eingegebene Daten ignoriert. Eine Warnung wird ausgegeben.

Beschreibung der Parameter für das Rekombinationszentrum, allgemein:

Fortran: NRZX zulässig: dx₁ .LE. NRZX(j) für 2 .EQ. J .EQ. INRZ, dx₁ .LE. NRZX(j) .LE. NRZX(j+1) für 2 .LE. j .LT. INRZ .LE. NMAX, NRZX(INRZ) .LE. X(NMAX) # Hierbei ist X(NMAX) der Abstand des Hauptgitterpunktes NMAX zum Zwischengitterpunkt 1 NRZX ist ein Feld der LÄNGE 1 .LE. INRZ .LE. NMAX . Die Feldgrenzen sind variabel und richten sich nach den Eingabeelementen. (vgl. Kommentar oben) # Voreinstellung: 0D0 Dimension: cm

Fortran: NRZ0 zulässig: 0D0 .LE. NRZ0 .LE. 1D23 # NRZ0 ist ein Feld mit Länge 1 .LE. INRZ .LE. NMAX . Die zulässigen Werte sind komponentenweise zu verstehen # Voreinstellung: NRZ0(1) = 4.70D13 Dimension: cm⁻³

Zusätzlich ist die Eingabe der Störstellenkonzentration durch He- und Elektronenbestrahlung möglich. Im Abschnitt 5.26a bis e werden die Gleichung und die Parameter beschrieben. Typischer Wert: PTKONZ= 0D13.

Weiter ist die Konzentrationsangabe von Platin mit dem Eingabeparameter PTKONZ möglich. Die Platinkonzentration ist konstant über das ganze Bauelement und somit nicht Ortsabhängig. Siehe Abschnitt 5.26f.

5.26a. Bedeutung der Eingabe für HE<LIUM>

Pearson IV Gleichung zur Beschreibung der Störstellenkonzentration:

$$y(x) = 10 \begin{cases} a+b \cdot \left[\frac{1 + \left(\frac{x-c}{d} - \frac{f}{2e}\right)^2}{1 + \left(\frac{f}{2e}\right)^2} \right]^{-e} \exp\left[-f \cdot \left(\left(\arctan \frac{x-c}{d} - \frac{f}{2e} \right) + \arctan\left(\frac{f}{2e}\right) \right) \right] \end{cases}$$

Bedeutung der Parameter:

a = log(HE1)	HE1 = Grundwert / Nullwert, entspricht "Elektronenbestrahlung". Bei HE1=0 gibt es nur He-
	Destrainung.
b = log(HE2)-a	HE2 = Maximalwert, entspricht "He-Bestrahlung", bei HE1=HE2 (b=0) gibt es nur Elektronenbestrahlung.
c = HE3	x-Wert für das Maximum
d = HE4	Breite der Spitze / Form des Funktionsabfalles, wenn $0 \rightarrow$ Funktion wird unendlich schmale Spitze d > 0
e = HE5	Breite der Spitze / Form des Funktionsabfalles, wenn $0 \rightarrow$ Funktion bleibt auf maximalen Wert $e > 0$
f = HE6	Symmetriefaktor, wenn $0 \rightarrow$ Funktion ist symmetrisch um Maximum; pos. \rightarrow Funktionszunahme links Funktionsabnahme rechts; neg. \rightarrow umgekehrt.

HE1 und HE2 geben jeweils die Summe der Störstellen (A-Zentren + VV-Zentren + K-Zentren) an.

Typische Werte: HE1= 8.57D13 HE2= 3.648D15 HE3= 17.08D-4 HE4= 0.692D-4 HE5= 0.647D0 HE6= 17.23D0

Eingabe:

! !HE1,HE2,HE3,HE4,HE5,HE6,PTKONZ HE<LIUM>=0D0,0D0,17.08D-4,0.692D-4,0.647D0,17.23D0,0D0

Die Parameter sind:

Fortran: HE1 zulässig: 0 .LE. HE1 .LE. 1D23 Voreinstellung: 0D0 Dimension: cm^{-3} Name(A): -: a = log(HE1)

Fortran: HE2

zulässig: HE1 .LE. HE2 .LE. 1D23 Voreinstellung: 0D0 Dimension: cm⁻³ Name(A): -: b = log(HE2)-a

Fortran: HE3 zulässig: 0 .LE. HE3 .LE. dx_{nmax} Voreinstellung: 17.08D-4 Dimension: cm Name(A): -: c

Fortran: HE4 zulässig: 0 .LE. HE4 .LE. 10 Voreinstellung: 0.692D-4 Dimension: cm Name(A): -: d

Fortran: HE5 zulässig: 0 .LE. HE5 .LE. 10 Voreinstellung: 0.647D0 Dimension: -Name(A): -: e

Fortran: HE6 zulässig: -100 .LE. HE6 .LE. 100 Voreinstellung: 17.23D0 Dimension: -Name(A): -: f

Fortran: PTKONZ zulässig: 0D0 .LE. PTKONZ .LE. 1D23 Voreinstellung: PTKONZ = 0D0 Dimension: cm⁻³

5.26b. PARAMETER für Elektronen- und Helium-Bestrahlung:

Quellen: Applying device simulation for lifetime-controlled devices R. Siemienic, W. Südkamp, J. Lutz Datei: lifetime-contr-p1.png usw.

Temperature dependent properties of different lifetime killing technologies on example of fast power diodes R. Siemienic, M. Netzel, W. Südkamp, J. Lutz. Datei: ieta2001.pdf

Zweites Modell für e- und He-Bestrahlung (veraltet!): Determination of parameters of radiation induced traps in Silicon R. Siemienic, W. Südkamp, J. Lutz Solid State Electronics 46(2002) page 891-901

Siehe auch: "Daten für die Tau-Berechnungen" auf Seite 131.

Die Gesamtkonzentration der Zentren in ADIOS ist YEHE(L)

Fortran: AXK_HE zulässig: 0D0 .LE. AXK_HE .LE. 10D0 Voreinstellung: 0.537D0 Dimension: -Name(A): -: Verhältnis A-Zentrum zu K-Zentrum bei He

Fortran: AXK_EE zulässig: 0D0 .LE. AXK_EE .LE. 10D0 Voreinstellung: 0.537D0 Dimension: -Name(A): -: Verhältnis A-Zentrum zu K-Zentrum bei e

Fortran: VXK_HE zulässig: 0D0 .LE. VXK_HE .LE. 10D0 Voreinstellung: 0.122D0 Dimension: -Name(A): -: Verhältnis V-Zentrum zu K-Zentrum bei He
Fortran: VXK_EE zulässig: 0D0 .LE. VXK_EE .LE. 10D0 Voreinstellung: 0D0 Dimension: -Name(A): -: Verhältnis V-Zentrum zu K-Zentrum bei e

Fortran: EHEMODE zulässig: 1 .LE. EHEMODE .LE. 2 Voreinstellung: 1 Dimension: -Name(A): -: Modeltype für e- und He-Bestrahlung , EHEMODE=2 für Zweites Modell (veraltet!) Achtung: Bei Konvergenzproblemen nicht Modell 2 benützen!

Zahl der K-, A- und VV-Zentren bei He-Bestrahlung

Formel: KZ=(YEHE(L)-(HE1/DIMN))/(1D0+AXK_HE+VXK_HE) Formel: AZ=(YEHE(L)-(HE1/DIMN))*AXK_HE/(1D0+AXK_HE+VXK_HE) Formel: VZ=(YEHE(L)-(HE1/DIMN))*VXK_HE/(1D0+AXK_HE+VXK_HE)

Zahl der K-, A- und VV-Zentren bei Elektronenbestrahlung

Formel: KZ=(HE1/DIMN)/(1D0+AXK_EE+VXK_EE) Formel: AZ=(HE1/DIMN)*AXK_EE/(1D0+AXK_EE+VXK_EE) Formel: VZ=(HE1/DIMN)*VXK_EE/(1D0+AXK_EE+VXK_EE)

5.26c. E(90K) A-Zentrum AKZEPTOR-Niveau

Effektiver Spinentartungsfaktor und Energieabstand zwischen Leitungsband und Akzeptorniveau des Rekombinationszentrums, ist temperaturunabhängig.

Fortran: BAZAKZ zulässig: 0D0 .LT. BAZAKZ .LT. 1D2 Voreinstellung: 2.00D0 Dimension: -Name(A): -: effektiver Spinentartungsfaktor für das Akzeptorniveau des A-Zentrums

Fortran: ECAAZ zulässig: 0D0 .LE. ECAAZ .LE. EGMIN Voreinstellung: 0.167D0 Dimension: V Name(A): -: E_c- E_A: Energieabstand zwischen Leitungsband und Akzeptorniveau des A-Zentrums

Formel: CNAZ=1.15D-7*DEXP(-TEMP/355.4D0) Formel Zweites Modell: CNAZ=0.872D-7*DEXP(-TEMP/474D0) Name(A): rn: Rekombinationskoeffizient für Elektronen

Fortran: CNAZ1 zulässig: CNAZ1.GE.0D0 Voreinstellung: 1.15D-7 Dimension: cm³/s

Fortran: CNAZ2 zulässig: 10D0.LE.CNAZ2.LE.1D3 Voreinstellung: 355.4D0 Dimension: K

Zweites Modell: Fortran: CNAZ12 zulässig: CNAZ12.GE.0D0 Voreinstellung: 0.872D-7 Dimension: cm³/s

Zweites Modell: Fortran: CNAZ22 zulässig: 10D0.LE.CNAZ22.LE.1D3 Voreinstellung: 474D0 Dimension: K In den nachfolgenden Gleichungen gilt stets: TREF=300K. In ADIOS gilt: H2=-E/K

Formel: CPAZ=6.39D-7*DSQRT(TEMP/TREF)*DEXP(6.15D-3*E/K*TEMP) Name(A): r_p: Rekombinationskoeffizient für Löcher

Fortran: CPAZ1 zulässig: CPAZ1.GE.0D0 Voreinstellung: 6.39D-7 Dimension: cm³/s

Fortran: CPAZ2 zulässig: -10D0.LE.CPAZ2.LE.0D0 Voreinstellung: -6.15D-3 Dimension: V

5.26d. E(230K) VV-Zentrum Multivacancy AKZEPTOR-Niveau

Effektiver Spinentartungsfaktor und Energieabstand zwischen Leitungsband und Akzeptorniveau des Rekombinationszentrums, ist temperaturunabhängig.

Fortran: BVZAKZ zulässig: 0D0 .LT. BVZAKZ .LT. 1D2 Voreinstellung: 2.00D0 Dimension: -Name(A): -: effektiver Spinentartungsfaktor für das Akzeptorniveau des VV-Zentrums

Fortran: ECAVZ zulässig: 0D0 .LE. ECAVZ .LE. EGMIN Voreinstellung: 0.447D0 Dimension: V Name(A): -: E_c- E_A: Energieabstand zwischen Leitungsband und Akzeptorniveau des VV-Zentrums

Zweites Modell: Fortran: ECAVZ2 zulässig: 0D0 .LE. ECAVZ2 .LE. EGMIN Voreinstellung: 0.553D0 Dimension: V Name(A): -: E_c- E_A: Energieabstand zwischen Leitungsband und Akzeptorniveau des VV-Zentrums

Formel: CNVZ=3.41D-8*SQRT(TEMP/TREF)*DEXP(22.13D-3*E/K*TEMP) Zweites Modell: CNVZ=4.98D-6*DEXP(-TEMP/273.15) Name(A): r_n : Rekombinationskoeffizient für Elektronen

Fortran: CNVZ1 zulässig: CNVZ1.GE.0D0 Voreinstellung: 3.41D-8 Dimension: cm³/s

Fortran: CNVZ2 zulässig: -10D0.LE.CNVZ2.LE.0D0 Voreinstellung: -22.13D-3 Dimension: V

Zweites Modell: Fortran: CNVZ12 zulässig: CNVZ12.GE.0D0 Voreinstellung: 4.98D-6 Dimension: cm³/s

Zweites Modell: Fortran: CNVZ22 zulässig: 10D0.LE.CNVZ22.LE.1D3 Voreinstellung: 273.15D0 Dimension: K

Formel: CPVZ=2.79D-8*SQRT(TEMP/TREF)*DEXP(-22.13D-3*E/K*TEMP) Zweites Modell: CPVZ=4.58D-10*DEXP(TEMP/31.25) Name(A): r_p: Rekombinationskoeffizient für die Löcher bei der Rekombination über ein Rekombinationszentrum mit einem Energieniveau im verbotenen Band für Donatoren

Fortran: CPVZ1 zulässig: CPVZ1.GE.0D0 Voreinstellung: 2.79D-8 Dimension: cm³/s

Fortran: CPVZ2 zulässig: 0D0.LE.CPVZ2.LE.10D0 Voreinstellung: 22.13D-3 Dimension: V

Zweites Modell: Fortran: CPVZ12 zulässig: CPVZ12.GE.0D0 Voreinstellung: 4.58D-10 Dimension: cm³/s

Zweites Modell: Fortran: CPVZ22 zulässig: 10D0.LE.CPVZ22.LE.1D3 Voreinstellung: 31.25D0 Dimension: K

5.26e. H(195K) K-Zentrum DONOR-Niveau

effektiver Spinentartungsfaktor und Energieabstand zwischen Donatorniveau des Rekombinationszentrums und Valenzband, ist temperaturunabhängig.

Fortran: BKZDON zulässig: 0D0 .LT. BKZDON .LT. 1D2 Voreinstellung: 2.00D0 Dimension: -Name(A): -: effektiver Spinentartungsfaktor für das Akzeptorniveau des K-Zentrums

Fortran: EDVKZ zulässig: 0D0 .LE. EDVKZ .LE. EGMIN Voreinstellung: 0.351D0 Dimension: V Name(A): -: E_D- E_V: Energieabstand zwischen Donatorniveau und Valenzband des K-Zentrums

Formel: CNKZ=9.85D-9*DSQRT(TEMP/TREF)*DEXP(-85D-3*E/K*TEMP) Name(A): r_p: Rekombinationskoeffizient für die Löcher bei der Rekombination über ein Rekombinationszentrum mit einem Energieniveau im verbotenen Band für Donatoren

Fortran: CNKZ1 zulässig: CNKZ1.GE.0D0 Voreinstellung: 9.85D-9 Dimension: cm³/s

Fortran: CNKZ2 zulässig: 0D0.LE.CNKZ2.LE.10D0 Voreinstellung: 85D-3 Dimension: V

Formel: CPKZ=4.3D-9*DSQRT(TEMP/TREF) Name(A): r_p: Rekombinationskoeffizient für die Löcher bei der Rekombination über ein Rekombinationszentrum mit einem Energieniveau im verbotenen Band für Donatoren

Fortran: CPKZ1 zulässig: CPKZ1.GE.0D0 Voreinstellung: 4.3D-9 Dimension: cm³/s

5.26f. PARAMETER für PLATIN

M. Conti, A. Panchieri, "Electrical Properties of Platinum in Silicon", Alta Frequenza, Vol. 40, pp. 544-546, 1971

PT-DONOR-Niveau

Effektiver Spinentartungsfaktor und Energieabstand zwischen Donatorniveau des Rekombinationszentrums und Valenzband, ist temperaturunabhängig.

Fortran: BPTDON zulässig: 0D0 .LT. BPTDON .LT. 1D2 Voreinstellung: 2.00D0 Dimension: -Name(A): -: effektiver Spinentartungsfaktor für das Donorniveau von Platin

Fortran: EDVPT zulässig: 0D0 .LE. EDVPT .LE. EGMIN Voreinstellung: 0.32D0 Dimension: V Name(A): -: E_D- E_V: Energieabstand zwischen Donatorniveau und Valenzband des PT-DONOR-Niveau

Formel: CNPTD = CNPTDMA * (TEMP/TREF) ** CNPTDEX Name(A): r_n: Rekombinationskoeffizient für die Elektronen bei der Rekombination über ein Rekombinationszentrum mit einem Energieniveau im verbotenen Band für Donatoren

Fortran: CNPTDMA zulässig: CNPTDMA .GE. 0D0 Voreinstellung: 3.340D-8 Dimension: cm³/s

Fortran: CNPTDEX zulässig:-10D0 .LE. CNPTDEX .LE. 10D0 Voreinstellung: -3.5D0 Dimension: -

Formel: CPPTD = CPPTDMA * (TEMP/TREF) ** CPPTDEX Name(A): r_p: Rekombinationskoeffizient für die Löcher bei der Rekombination über ein Rekombinationszentrum mit einem Energieniveau im verbotenen Band für Donatoren

Fortran: CPPTDMA zulässig: CPPTDMA .GE. 0D0 Voreinstellung: 3.023D-8 Dimension: cm³/s

Fortran: CPPTDEX zulässig:-10D0 .LE. CPPTDEX .LE. 10D0 Voreinstellung: 0.411D0 Dimension: -

PT-AKZEPTOR-Niveau

Effektiver Spinentartungsfaktor und Energieabstand zwischen Leitungsband und Akzeptorniveau des Rekombinationszentrums, ist temperaturunabhängig.

Fortran: BPTAKZ zulässig: 0D0 .LT. BPTAKZ .LT. 1D2 Voreinstellung: 2D0 Dimension: -Name(A): -: effektiver Spinentartungsfaktor für das Akzeptorniveau von Platin

Fortran: ECAPT zulässig: 0D0 .LE. ECAPT .LE. EGMIN Voreinstellung: 0.228D0 Dimension: V Name(A): -: E_c - E_A: Energieabstand zwischen Leitungsband und Akzeptorniveau vom PT-AKZEPTOR-Niveau Formel: CNPTA = CNPTAMA * (TEMP/TREF) ** CNPTAEX Name(A): r_p: Rekombinationskoeffizient für die Löcher bei der Rekombination über ein Rekombinationszentrum mit einem Energieniveau im verbotenen Band für Akzeptoren

Fortran: CNPTAMA zulässig: CNPTAMA .GE. 0D0 Voreinstellung: 1.484D-7 Dimension: cm³/s

Fortran: CNPTAEX zulässig:-10D0 .LE. CNPTAEX .LE. 10D0 Voreinstellung: 2.5D0 Dimension: -

Formel: CPPTA = CPPTAMA * (TEMP/TREF) ** CPPTAEX Name(A): r_p: Rekombinationskoeffizient für die Löcher bei der Rekombination über ein Rekombinationszentrum mit einem Energieniveau im verbotenen Band für Akzeptoren

Fortran: CPPTAMA zulässig: CPPTAMA .GE. 0D0 Voreinstellung: 8.943D-8 Dimension: cm³/s

Fortran: CPPTAEX zulässig:-10D0 .LE. CPPTAEX .LE. 10D0 Voreinstellung: -3.9D0 Dimension: -

5.27. Die Bauelementefläche:

Fortran: AQUER zulässig: AQUER .GT. 0D0 Voreinstellung: 1.66D0 Dimension: cm² Name(A): -: Bauelementefläche

5.28. Die aktuelle Feldgröße:

Fortran: NMAX zulässig: 4 .LE. NMAX .LE. 1000 Name(A): n: Zahl der Hauptgitterpunkte des Ortsdiskretisierungsgitters

NMAX wird automatisch durch den Eingabeprozessor nach der Eingabe von DX erzeugt und kann somit nur über die Eingabe von DX beeinflusst werden.

5.29. Fehlergrenze für die Zeitschrittweitensteuerung:

Fortran: FEHL2 zulässig: 1D-6 .LE. FEHL2 .LE. 1D-2 Voreinstellung: 1D-3

Name(A): -: Relativer maximal zulässiger Fehler beim Prädiktor-Korrektor Vergleich für die Zeitschrittweitensteuerung. Die Genauigkeit, bzw. Richtigkeit der Simulationsergebnisse kann durch Änderung dieses Parameters getestet werden. Verkleinert der Benutzer FEHL2 um den Faktor 10, und ist dann die relative Änderung der Simulationsergebnisse groß, dann muss er davon ausgehen, dass FEHL2 vorher zu groß war.

5.30. Parameter für die Wärmewiderstände:

Der Wärmewiderstand ist der Kehrwert der Wärmeleitfähigkeit, die in den Formeln (A.18.1), (A.18.2) und (A.18.3) auftritt, und die zur Berechnung der Wärmeströme benötigt wird. Anhand der Wärmeströme wird die Temperatur im Bauelement an den Hauptgitterpunkten berechnet.

Die Wärmewiderstände RTHP, RTHN, RTHL, RTHR dienen in den oben genannten partiellen Differenzialgleichungen (A.18.2) und (A.18.3) als Randbedingungen. Die hier verwendeten Wärmewiderstände sind, wie an der Dimension zu erkennen, so ausgelegt, dass eine Änderung der Diodenquerschnittsfläche bei sonst unveränderter Eingabe zu keiner Änderung der Wärmewiderstandswerte führt.

Fortran: RTHP zulässig: 0D0 .LE. RTHP .LE. 1D6 Voreinstellung: 0D0 Dimension: (K*cm²)/W Name(A): R_{th p}: Wärmeübertragungswiderstand des Metall-Silizium-Übergangs am Zwischengitterpunkt 1 (vgl. Bild A.18.1)

Fortran: RTHN zulässig: 0D0 .LE. RTHN .LE. 1D6 Voreinstellung: .16129D0 Dimension: (K*cm²)/W Name(A): Rthin: Wärmeübertragungswiderstand des Metall-Silizium-Übergangs am Zwischengitterpunkt NMAX+1 (vgl. Bild A.18.1)

Fortran: RTHL zulässig: 0D0 .LE. RTHL .LE. 1D6 Voreinstellung: .16129D0 Dimension: (K*cm²)/W Name(A):Rthl: Wärmeübertragungswiderstand von Metall auf linke Umgebung (vgl. Bild A.18.1)

Fortran: RTHR zulässig: 0D0 .LE. RTHR .LE. 1D6 Voreinstellung: .16129D0 Dimension: (K*cm²)/W Name(A):R_{th r}: Wärmeübertragungswiderstand von Metall auf rechte Umgebung (vgl. Bild A.18.1)

5.31. Das Bandgapnarrowing:

Fortran: BGNTYP zulässig: BGNTYP=0,1 Voreinstellung: 0 Name(A): -: Bandgapnarrowing-Modell, und zwar BGNTYP=0: Modell von Alamo (vgl. Anhang A.4) BGNTYP=1: Modell von Slotboom (vgl. Anhang A.4) Beide Modelle benutzen die gleichen Eingabedaten.

Parameter für die Temperaturabhängigkeit des Bandgapnarrowing

```
Die Gleichungen Delta-Ec = Delta-Ec * (1 + BGNCTK * (Temp - 300 K))
und Delta-Ev = Delta-Ev * (1 + BGNVTK * (Temp - 300 K)) bilden die Temperaturabhängigkeit des Bandgapnarrowing
nach.
```

Fortran: BGNCTK zulässig: -1D0 .LE. BGNCTK .LE. 1D0 Voreinstellung: 0D0 Dimension: V/K

Name(A): Temperaturkoeffizient des Bandgapnarrowing an der Leitungsbandkante.

Fortran: BGNVTK zulässig: -1D0 .LE. BGNVTK .LE. 1D0 Voreinstellung: 0D0 Dimension: V/K Name(A): Temperaturkoeffizient des Bandgapnarrowing an der Valenzbandkante.

Siehe auch die logischen Parameter BGNNC und BGNNV zum Ein- und Ausschalten des Bandgapnarrowing.

5.32. Die Oberflächenrekombination:

Die Oberflächenrekombination ist nur für die Berechnung der Ladungsträgerkonzentrationen an den Hauptgitterpunkten 1 und NMAX von Bedeutung. Da die Oberflächenrekombination sehr stark von der Struktur des Metall-Silizium-Übergangs abhängt, ist für jeden Metall-Silizium-Übergang einen eigenen Eingabedatensatz vorgesehen. Als Grundlage für die Berechnung wird sowohl am rechten (in der Nähe des Hauptgitterpunktes NMAX liegenden), wie auch am linken (in der Nähe des Hauptgitterpunktes 1 liegenden) Metall-Silizium-Übergang die Gleichung (A.11.1), welche die Oberflächenrekombination beschreibt, herangezogen. Diese hat im Anhang folgende Form:

$$\begin{split} n^*p - n_i^2 \\ R_0 &= \frac{n^*p - n_i^2}{(1/s_p)^* (n+n_i) + (1/s_n)^* (p+n_i)}, \text{ wobei} \\ s_p &= \frac{s_{po}}{------} \text{ und } s_n = \frac{s_{no}}{------} \\ T/300K & T/300K \end{split}$$

Hierbei ist:

s_p: Oberflächenrekombinationsgeschwindigkeit der Löcher

 s_{po} : Oberflächenrekombinationsgeschwindigkeit der Löcher bei T = 300 K

s_n: Oberflächenrekombinationsgeschwindigkeit der Elektronen

 s_{no} : Oberflächenrekombinationsgeschwindigkeit der Elektronen bei T = 300 K

n_i: Eigenleitungsdichte im thermischen Gleichgewicht

5.33. Parameter für die Oberflächenrekombination am linken Metall-Silizium-Übergang:

Fortran: SPL0 zulässig: 1D-30 .LE. SPL0 .LE. 1D30 Voreinstellung: 1D7 Dimension: cm/s

Fortran: SPLEX zulässig: -10 .LE. SPLEX .LE. 10 Voreinstellung: -1D0

Formel: SPL = SPL0 * (T/300K) ** SPLEX # entspricht (A.11.8) # # Diese Formel wird bis auf Normierung mit H115 im Programm verwendet # Name(A): sp: Oberflächenrekombinationsgeschwindigkeit mit Temperatureinfluss für Löcher am linken Metall-Silizium-

Übergang, speziell SPL0: Oberflächenrekombinationsgeschwindigkeit ohne Temperatureinfluss für Löcher am linken Metall-Silizium-Übergang

Fortran: SNL0 zulässig: 1D-30 .LE. SNL0 .LE. 1D30 Voreinstellung: 1D7 Dimension: cm/s

Fortran: SNLEX

zulässig: -10 .LE. SNLEX .LE. 10 Voreinstellung: -1D0

Formel: SNL = SNL0 * (T/300K) ** SNLEX # entspricht (A.11.8) #

Diese Formel wird bis auf Normierung mit H115 im Programm verwendet

Name(A): s_n: Oberflächenrekombinationsgeschwindigkeit mit Temperatureinfluss für Elektronen am linken Metall-Silizium-Übergang, speziell SNL0: Oberflächenrekombinationsgeschwindigkeit ohne Temperatureinfluss für Elektronen am linken Metall-Silizium-Übergang

5.34. Parameter für die Oberflächenrekombination am rechten Metall-Silizium-Übergang:

Fortran: SPR0 zulässig: 1D-30 .LE. SPR0 .LE. 1D30 Voreinstellung: 1D7 Dimension: cm/s

Fortran: SPREX zulässig: -10 .LE. SPREX .LE. 10 Voreinstellung: -1D0

Formel: SPR = SPR0 * (T/300K) ** SPREX # entspricht (A.11.8) # # Diese Formel wird bis auf Normierung mit H115 im Programm verwendet # Name(A): s_p: Oberflächenrekombinationsgeschwindigkeit mit Temperatureinfluss für Löcher am rechten Metall-Silizium-Übergang, speziell SPR0: Oberflächenrekombinationsgeschwindigkeit ohne Temperatureinfluss für Löcher am rechten Metall-Silizium-Übergang

Fortran: SNR0 zulässig: 1D-30 .LE. SNR0 .LE. 1D30 Voreinstellung: 1D7 Dimension: cm/s

Fortran: SNREX zulässig: -10 .LE. SNREX .LE. 10 Voreinstellung: -1D0

Formel: SNR = SNR0 * (T/300K) ** SNREX # entspricht (A.11.8) #

- # Diese Formel wird bis auf Normierung mit H115 im Programm verwendet # Name(A): s_n: Oberflächenrekombinationsgeschwindigkeit mit Temperatureinfluss für Elektronen am rechten Metall-Silizium-Übergang, speziell SNR0: Oberflächenrekombinationsgeschwindigkeit ohne Temperatureinfluss für Elektronen am rechten Metall-Silizium-Übergang
- Mit s_p , s_n sind folgende Gleichungen programmiert: (A.11.1), (A.11.2), (A.11.3), (A.11.4), (A.11.5), (A.11.6), (A.11.7), (A.11.9)

5.35. Parameter für die Randbedingungen des elektrischen Feldes:

Fortran: EFELDP zulässig: -1D4 .LE. EFELDP .LE. 1D4 Voreinstellung: 0D0 Dimension: V/cm Name(A): -: elektrische Feldstärke am Zwischengitterpunkt 1 ,wird als Randbedingung für die zu lösenden Differenzialgleichungen benötigt (vgl. Anhang Abschnitt A.22)

Fortran: EFELDN zulässig: -1D4 .LE. EFELDN .LE. 1D4 Voreinstellung: 0D0 Dimension: V/cm

Mit s_p , s_n sind folgende Gleichungen programmiert: (A.11.1), (A.11.2), (A.11.3), (A.11.4), (A.11.5), (A.11.6), (A.11.7), (A.11.9)

Name(A): -: elektrische Feldstärke am Zwischengitterpunkt NMAX+1 ,wird als Randbedingung für die zu lösenden Differenzialgleichungen benötigt (vgl. Anhang Abschnitt A.22)

5.36. Fit-Parameter für die Shockley-Read-Hall-Gleichung (A.7.1): (Scharfetter-Relation)

Die Gleichung (A.7.1), die die Rekombination über Rekombinationszentren beschreibt, hat im Anhang folgende Form:

 $R_{\text{SRH}} = \frac{n^*p - {n_i}^2}{\tau_p * (n + n_1) + \tau_n * (p + n_1)} \text{, wobei}$

Hierbei ist:

τ_{co}: Ladungsträgerlebensdauer der Löcher bei niedriger Störstellenkonzentration τ_p: Ladungsträgerlebensdauer der Löcher τ_{no} : Ladungsträgerlebensdauer der Elektronen bei niedriger Störstellenkonzentration τ_n: Ladungsträgerlebensdauer der Elektronen n_i: Eigenleitungsdichte im thermischen Gleichgewicht

Das Programm verwendet fest $n_1 = p_1 = n_i$ zur Berechnung der SRH-Gleichung

Fortran: NREF zulässig: 1D0 .LE. NREF .LE. 1D30 Voreinstellung: 2.5D15 Dimension: cm⁻³ Name(A): NRef: Fit-Parameter in der SRH-Gleichung (A.7.1), hat die Bedeutung einer Referenzkonzentration

Fortran: GAMAS zulässig: 0D0 .LE. GAMAS .LE. 1D1 Voreinstellung: .6D0 Name(A): y: Fit-Parameter in der SRH-Gleichung (A.7.1), ist Exponent

5.37. Parameter für die Eingabe der Lebensdauerprofile:

Für die Lebensdauerprofile missen folgende Daten eingegeben werden: der Abstand zu dem beim Zwischengitterpunkt 1 liegenden Metall-Silizium-Übergang für alle Stützstellen und die Lebensdauerwerte an diesen Stützstellen. Für Löcher und Elektronen erfolgt die Wahl der Stützstellen separat.

Das Programm interpoliert zwischen den Lebensdauerstützstellen linear. Daher geht in die Berechnung der Lebensdauerwerte für die Hauptgitterpunkte 2 bis NMAX-1 jeweils nur die dem jeweiligen Hauptgitterpunkt links und rechts nächstliegende Lebensdauerstützstelle ein. Deshalb sollte die Eingabe von mehr als zwei Lebensdauerstützstellen zwischen zwei aufeinanderfolgenden Hauptgitterpunkten vermieden werden. Um zu gewährleisten, dass der Benutzer dies nicht außer Acht lässt, wurde die zulässige Zahl der Lebensdauerstützstellen auf den Maximalwert NMAX, die Anzahl der Hauptgitterpunkte, begrenzt.

Für die Hauptgitterpunkte 1 und NMAX werden allerdings die Lebensdauerwerte folgendermaßen bestimmt: Dem Hauptgitterpunkt 1 wird der erste eingegebene Lebensdauerwert unabhängig von der Lage der ersten eingegebenen Stützstelle zugewiesen. Der eingegebene Parameter für den Abstand der ersten Stützstelle zum Zwischengitterpunkt 1 wird durch dx1 überschrieben (dx1 wurde in Abschnitt 5.8 erklärt).

Dem Hauptgitterpunkt NMAX wird der letzte eingegebene Lebensdauerwert unabhängig von der Lage der letzten eingegebenen Stützstelle zugewiesen. Der eingegebene Parameter für den Abstand der letzten Stützstelle zu dem Zwischengitterpunkt 1 wird durch den Abstand des Hauptgitterpunktes NMAX zum Zwischengitterpunkt 1 überschrieben.

Optionen bei der Eingabe der Lebensdauerprofile

- 1. Eingabe nur je einer Stützstelle und eines Lebensdauerwertes bewirkt konstantes Lebensdauerprofil.
- 2. Eingabe von Lebensdauersprüngen durch doppelte Angabe der Lage einer Stützstelle bei verschiedenen
- Lebensdauerangaben. In diesem Fall wird für die lineare Interpolation nach rechts der zweite Lebensdauerwert, und für die lineare Interpolation nach links der erste Lebensdauerwert verwendet.

5.38. Parameter für das Lebensdauerprofil der Elektronen:

Die Länge der Felder TAUNX und TAUN0 bestimmt das Programm automatisch anhand der eingegebenen Feldkomponenten. Nach jedem Laden des Simulators und vor der Belegung mit Werten, zu denen auch die Voreinstellungen gehören, sind die Felder TAUNX und TAUN0 mit 0D0 besetzt.

Wünscht der Benutzer kein frei wählbares Profil einzugeben, muss er TAUN0 = TAUNX = 0D0 oder nichts eingeben.

ITAUN ist die bei der Eingabe ermittelte aktuelle Feldgröße. Falls TAUNX(j) .EQ. 0D0 und TAUN0(j) .NE. 0D0 für 2 .LE. j .LE. ITAUN meldet das Programm "TAUNX ZU KLEIN". Wenn diese Meldung auftritt, kann es sein, dass nicht, wie verlangt, eine gleiche Anzahl von Stützstellen und Konzentrationen eingegeben wurden. Allerdings wird diese Meldung auch ausgegeben, falls TAUNX(j+1) .LT. TAUNX(j) für 1 .LE. j .LT. ITAUN .

Falls TAUNX(j) .NE. 0D0 und TAUN0(j) .EQ. 0D0 für 2 .LE. j .LE. ITAUN geht das Programm von einer gewünschten Eingabe aus. Da nicht belegte Feldelemente nach dem Laden des Simulators mit 0D0 vorbelegt sind, erfährt der Benutzer in diesem Fall nicht, ob er zu wenige Konzentrationen eingegeben hat.

Daher muss der Benutzer unbedingt selbst kontrollieren, dass er für TAUNX und TAUN0 Felder mit gleicher Länge eingibt.

Es ist zu beachten, dass die maximale Feldgröße durch den Fortran-Parameter GR0 = 1000 begrenzt ist. Wird ein größeres Feld eingegeben, so werden die zu viel eingegebene Daten ignoriert. Eine Warnung wird ausgegeben.

Fortran: TAUNX

zulässig: dx₁ .LE. TAUNX(j) für 2 .EQ. j .EQ. ITAUN , dx₁ .LE. TAUNX(j) .LE. TAUNX(i+1) für

> 2 .LE. j .LT. ITAUN .LE. NMAX, TAUNX(ITAUN) .LE. X(NMAX)

Hierbei ist X(NMAX) der Abstand des Hauptgitterpunktes NMAX zum
 Zwischengitterpunkt 1
 TAUNX ist ein Feld der LÄNGE 1 .LE. ITAUN .LE. NMAX . Die Feldgrenzen sind variabel und richten sich nach den Eingabeelementen. (vgl. Kommentar oben) #
 Voreinstellung: 0D0 Dimension: cm

Fortran: TAUN0 zulässig: 0D0 .LT. TAUN0 # TAUN0 ist ein Feld mit LÄNGE 1 .LE. ITAUN .LE. NMAX . Die zulässigen Werte sind komponentenweise zu verstehen # Voreinstellung: 3.00D-6 Dimension: s

5.39. Parameter für das Lebensdauerprofil der Löcher:

Die Länge der Felder TAUPX und TAUP0 bestimmt das Programm automatisch anhand der eingegebenen Feldkomponenten. Nach jedem Laden des Simulators und vor der Belegung mit Werten, zu denen auch die Voreinstellungen gehören, sind die Felder TAUPX und TAUP0 mit 0D0 besetzt.

Wünscht der Benutzer kein frei wählbares Profil einzugeben, muss er TAUP0=TAUPX=0D0 oder nichts eingeben.

ITAUP ist die bei der Eingabe ermittelte aktuelle Feldgröße. Falls TAUPX(j) .EQ. 0D0 und TAUP0(j) .NE. 0D0 für 2 .LE. j .LE. ITAUP meldet das Programm "TAUPX ZU KLEIN". Wenn diese Meldung auftritt, kann es sein, dass nicht, wie verlangt, eine gleiche Anzahl von Stützstellen und Konzentrationen eingegeben wurden. Allerdings wird diese Meldung auch ausgegeben, falls TAUPX(j+1) .LT. TAUPX(j) für 1 .LE. j .LT. ITAUP .

Falls TAUPX(j) .NE. 0D0 und TAUP0(j) .EQ. 0D0 für 2 .LE. j .LE. ITAUP geht das Programm von einer gewünschten Eingabe aus. Da nicht belegte Feldelemente nach dem Laden des Simulators mit 0D0 vorbelegt sind, erfährt der Benutzer in diesem Fall nicht, ob er zu wenig Konzentrationen eingegeben hat.

Daher muss der Benutzer unbedingt selbst kontrollieren, dass er für TAUNX und TAUN0 Felder mit gleicher Länge eingibt.

Es ist zu beachten, dass die maximale Feldgröße durch den Fortran-Parameter GR0 = 1000 begrenzt ist. Wird ein größeres Feld eingegeben, so werden die zu viel eingegebene Daten ignoriert. Eine Warnung wird ausgegeben.

 $\begin{array}{l} \mbox{Fortran: TAUPX} \\ \mbox{zulässig: } dx_1 \ .LE. \ TAUPX(j) \ für \ 2 \ .EQ. \ j \ .EQ. \ ITAUP \ , \\ \ dx_1 \ .LE. \ TAUPX(j) \ .LE. \ TAUPX(j+1) \ für \end{array}$

2 .LE. j .LT. ITAUP .LE. NMAX,

TAUPX(ITAUP) .LE. X(NMAX) # Hierbei ist X(NMAX) der Abstand des Hauptgitterpunktes NMAX zum Zwischengitterpunkt 1 TAUPX ist ein Feld der LÄNGE 1 .LE. ITAUP .LE. NMAX . Die Feldgrenzen sind variabel und richten sich nach den Eingabeelementen. (vgl. Kommentar oben) # Voreinstellung: 0D0 Dimension: cm

Fortran: TAUP0 zulässig: 0D0 .LT. TAUP0 # TAUP0 ist ein Feld mit LÄNGE 1 .LE. ITAUP .LE. NMAX . Die zulässigen Werte sind komponentenweise zu verstehen # Voreinstellung: 0.60D-6 Dimension: s

5.40. Parameter für die Wahl der Randmetalle:

Selektoren für die Wahl der Randmetalle

Die beiden Fortranparameter METLIC und METREC dienen als Selektoren für die Wahl der Randmetalle. Mit METLIC bzw. METREC werden die Fortranvariablen LAMBD und RHOMC für T=350 K programmintern zugewiesen. Nur LAMBD für Silizium ist eine Funktion der Temperatur:

Lambda = 1.56 * (T/300 K)^{-1.34} W/cm/K

Die Tabellen von Abschnitt 9 geben die Werten von LAMBD und RHOMC als Funktion des Metalltyps und der Temperatur an.

 $\begin{array}{l} \mathsf{LAMBD} = \lambda & \text{ im Anhang und hat die Dimension J/(K*cm*s) bzw.} \\ \mathsf{RHOMC} = \rho_{m} * c \text{ im Anhang und hat die Dimension J/(K*cm^{3})} \,. \end{array}$

 λ : Wärmeleitfähigkeit c : spezifische Wärmekapazität ρ_m : Dichte

Die angegebenen Werten der Tabellen von Abschnitt 9 gehen über die partielle Differenzialgleichung (A.18.3) in die Temperaturberechnung der Randmetalle ein.

Zulässige Eingaben von MET..C:

AL, CR, CU, GE, AU, FE, MO, NI, PT, SI, AG, W, TI, XX

Bei der Eingabe von XX sind LAMBD und RHOMC über den Eingabedatensatz für die beide Metalle einstellbar.

Fortran: METLIC zulässig: METLIC = siehe oben Voreinstellung: MO Name(A): -: Selektor für Wahl des linken Randmetalles

Fortran: METREC zulässig: METREC = siehe oben Voreinstellung: CU Name(A): -: Selektor für Wahl des rechten Randmetalles

Fortran: RHOMCL zulässig: 0D0 .LT. RHOMCL .LE. 10 Voreinstellung: 2.703D0 Dimension: J/K/cm³ Name(A): -: Selektor für die Wahl von ρ_m * c für das linke Metall, wenn METLIC=XX

Fortran: LAMBDL zulässig: 0D0 .LT. LAMBDL .LE. 100 Voreinstellung: 1.350D0 Dimension: W/cm/K Name(A): -: Selektor für die Wahl von λ für das linke Metall, wenn METLIC=XX

Fortran: RHOMCR zulässig: 0D0 .LT. RHOMCR .LE. 10 Voreinstellung: 3.513D0 Dimension: J/K/cm³ Name(A): -: Selektor für die Wahl von ρ_m * c für das rechte Metall, wenn METREC=XX

Fortran: LAMBDR zulässig: 0D0 .LT. LAMBDR .LE. 100 Voreinstellung: 3.981D0 Dimension: W/cm/K Name(A): -: Selektor für die Wahl von λ für das rechte Metall, wenn METREC=XX

5.41. Parameter für das Ortsdiskretisierungsgitter der Randmetalle:

Das Diskretisierungsgitter für die Randmetalle

Das Programm rechnet während der gesamten Laufzeit mit einem festen Diskretisierungsgitter für den Ort. Dies gilt ebenso für die Randmetalle wie für das Silizium. Im Gegensatz zum Silizium wird bei den Randmetallen mit einem äquidistanten Gitter gerechnet. Das Diskretisierungsgitter wird durch Eingabe von XMETL für die linke Randmetallschicht und XMETR für die rechte Randmetallschicht festgelegt. Die Parameter XMETL bzw. XMETR, die die Dicke des jeweiligen Metalls angeben, werden durch NMAX geteilt. Die so ermittelten Fortranparameter DXMETL = XMETL / NMAX und DXMETR = XMETR / NMAX sind die Abstände zwischen zwei aufeinander folgenden Haupt- bzw. Zwischengitterpunkten (vgl. Bild A.20.4). Mit DXMETR und DXMETL werden alle für die Temperaturverteilung in den Randmetallschichten nötigen Berechnungen durchgeführt. Ansonsten werden für die Simulation der Randmetalle keine Werte benötigt.

Fortran: XMETL zulässig: XMETL .GT. 0D0 Voreinstellung: 0.15D0 Dimension: cm Name(A): -: Randmetalldicke am Bauelement links

Fortran: XMETR zulässig: XMETR .GT. 0D0 Voreinstellung: 0.15D0 Dimension: cm Name(A): -: Randmetalldicke am Bauelement rechts

5.42. Die maximal zulässige CPU-Zeit:

Fortran: CPUMAX zulässig: 0D0 .LT. CPUMAX .LE. 32000D0 Voreinstellung: 32000D0 Dimension: s Name(A): -: Bei manchen Computern ist die r

Name(A): -: Bei manchen Computern ist die maximal mögliche CPU-Zeit für einen Rechenlauf begrenzt. Um ein undefiniertes Abbrechen eines Rechenlaufes zu vermeiden, kann der Benützer eine Obergrenze CPUMAX angeben. Die insbesondere bei einem Hintergrundlauf mögliche Begrenzung der maximalen Prozesszeit muss mit dem Parameter CPUMAX angepasst werden. In CPUMAX sind die Zeiten für Dateizuweisungen, Laden und Entladen von ADIOS (mit bis zu 50 CPU - Sek.) nicht enthalten. Addiert man diesen Wert, der auch vom verwendeten Rechner abhängig ist, zu CPUMAX hinzu, erhält man die für einen Hintergrundlauf im Betriebssystem zu reservierende Prozesszeit.

5.43. Parameter zur Wahl der Simulationsmodelle:

Alle im folgenden angegebenen Parameter sind Selektoren zur Wahl der Simulationsmodelle. Bei der Wahl eines Modells bleiben die Eingabedaten für die nicht gewählten Modelle unberücksichtigt, werden aber bei Eingabe auf Syntax und Plausibilität geprüft.

Fortran: MODELL
zulässig: MODELL = 0,1
Voreinstellung: 0
Name(A): -: Rekombinationsmodell der Simulation, und zwar:
MODELL = 0: Dynamische Besetzung der Störstellen, Bezeichnung als ADIOS-MODELL. Die Eingabe der Lebensdauerprofile ist wirkungslos.
MODELL = 1: Konstante Störstellenbesetzung, Bezeichnung als MEDUSA-MODELL. Bei Wahl dieses Modells erübrigt sich die Eingabe der für die Rekombination und Massenwirkungskonstanten nötigen Eingabeparameter.

zulässig: SIMTYP = 0,1,2,3,4,5Voreinstellung: 0

Name(A): -: Bei den Simulationen bzw. Berechnungen, die durch SIMTYP selektiert werden, kann der Parameter ZK als Zeitkonstante mit einem aus numerischen Gründen bei 25 ns liegenden Richtwert auftreten.

SIMTYP = 0: Normale Bauelementabschaltungen oder stationäre Durchlasskennlinie wenn TFIN = 0D0. Der Widerstand des Schalters bestimmt sich nach den Tabellenwerten RZEIT und RWERT. Die RC-Beschaltung und CPAR werden berücksichtigt.

- SIMTYP = 1: OCVD-Simulation ohne RC-Beschaltung mit Abschaltzeitkonstante ZK, Anfangsstrom I0 und Endstrom 0
- SIMTYP = 2: Einschaltvorgang mit Einschaltzeitkonstante ZK, Anfangsstrom DLKMIN und Endstrom DLKMIN + I0. Die RC-Beschaltung und CPAR werden berücksichtigt.
- SIMTYP = 3: Stationäre Durchlasskennlinie für die durch DLKMIN und DLKEXP vorgegebenen diskreten Punkte (siehe Abschnitt 5.44)
- SIMTYP = 4: Quasi-stationäre Vorwärtskennlinie bei I0 .GT. 0D0 bzw. Rückwärts- (Sperr-) Kennlinie bei I0 .LT. 0D0 Im Fall I0 .GT. 0D0 lineares Ansteigen des Stromes von 0 auf I0, und im Fall I0 .LT. 0D0 lineares Absinken des Stromes von 0 auf I0. Der Wert I0 wird jeweils zum Zeitpunkt TFIN erreicht
- SIMTYP = 5: Stoßstrom ohne RC-Beschaltung bei einer 50 Hz Sinushalbschwingung. Stationärer Vorstrom: DLKMIN Stromverlauf: IDI = DLKMIN + I0 * SIN(ω *T) wenn SIN(ω*T) .GE. 0D0 und sonst: IDI = DLKMIN. ω entspricht die Kreisfrequenz von 50 Hz.

Fortran: MUTYP zulässig: MUTYP=0,1 Voreinstellung: 1 Name(A): -: Beweglichkeitsmodell der Ladungsträger, und zwar: MUTYP=0: Modell von Arora, benützt die Eingabedaten HSL1, HSL2, HSL3 und HSL4. MUTYP=1: Modell von Schlangenotto, benützt die Eingabedaten HMUP1, HMUP2, ..., HMUP9 wie HMUN1, HMUN2, ..., HMUN9.

5.44. Parameter bei der Wahl von SIMTYP=3 als Simulationsmodell:

Die Formel

bildet die Grundlage für die durch SIMTYP = 3 selektierte Berechnung der stationären Durchlasskennlinie. Als erster Wert für I0 wird der im Folgenden beschriebene, gleichnamige Eingabeparameter I0 als stationärer Vorwärtsstrom für die stationäre Simulation verwendet. Zur jeweils nächsten stationären Simulation wird der in der vorausgehenden Simulation verwendete Parameter I0 in obige Formel eingesetzt. Solange wie dieser neu berechnete Wert von I0 DLKMIN nicht unterschreitet, wird eine neue stationäre Simulation durchgeführt.

Fortran: DLKEXP zulässig: 1D0 .LE. DLKEXP .LE. 10D0 Voreinstellung: 2D0 Name(A): -: Zahl der Berechnungspunkte der Durchlasskennlinie pro Stromdekade bei SIMTYP = 3

Fortran: DLKMIN zulässig: 0D0 .LT. DLKMIN .LT. 10 # 10 ist hierbei der Anfangsstrom # Voreinstellung: 1D-3 Dimension: A Name(A): -: minimaler Strom bei der Berechnung der Durchlasskennlinie bei SIMTYP=3

Stationärer Vorstrom bei SIMTYP = 2 (Einschalten) und SIMTYP = 5 (Stoßstrom). Diese Eingabe ist besonders bei der Simulation von Thyristoren von Bedeutung wenn vom eingeschalteten Zustand ausgegangen werden soll.

5.45. Parameter für die Beschaltung des Bauelementes:

Zur Beschaltung vgl. Bild (A.19.3) des Anhangs. Die Simulation der Beschaltung erfolgt auf Grundlage der Differenzialgleichungen (A.19.6), (A.19.7) und (A.19.8):

 $\frac{dI_{L}}{dt} = \frac{U_{D} + U_{Di} + U_{Rsch}}{L_{1} + L_{st}} = \frac{U_{D} + U_{Di} + R_{Sch} * (I_{L} - I_{F})}{L_{1} + L_{st}}$ (A.19.6) $\frac{dI_{C}}{dt} = \frac{U_{Di} - I_{C} * R - U_{C}}{L_{2}}$ (A.19.7) $\frac{dU_{C}}{dt} = \frac{I_{C}}{C}$ (A.19.8) $\frac{dU_{C}}{dt} = \frac{I_{C}}{C}$ (A.19.8) Hierbei ist: $U_{Di}: Spannungsabfall über das Bauelement$ $U_{Rect}: Spannungsabfall über den Schalter$

U_{Rsch}: Spannungsabfall über den Schalter
 U_C: Spannungsabfall über den Kondensator
 I_C: Strom durch den Kondensator
 Alle anderen auftretenden Größen werden bei der Beschreibung der nachfolgenden Eingabedaten erklärt.

Die Parallelkapazität zur Diode CPAR wird in Bild (A.19.3) und in den zugehörigen Gleichungen nicht berücksichtigt.

Fortran: L1 zulässig: 0D0 .LT. L1 .LE. (1D30 - L0) # Hierbei wird L0 unten erklärt # Voreinstellung: 3.00D-6 Dimension: H Name(A): L₁: (vgl. Bild (A.19.3)) Induktivität der linearen Spule. Der Parallelwiderstand zu L1 ist: RL1PAR

L1 wird zusätzlich durch die Parameter LZEIT und LWERT bestimmt. Siehe dazu Abschnitt 5.45a

Achtung: nur bei SIMTYP=0 hat Angabe von L0 eine Wirkung !!!

Fortran: L0 zulässig: 0D0 .LE. L0 .LE. (1D30 - L1) Voreinstellung: 0.00D-6 Dimension: H Name(A): L₀: (vgl. Bild (A.19.3)) Anfangsinduktivität der Spule mit Stufenkern

Für die Berechnung der Induktivität des Stufenkerns ist eine zu (A.19.15) analoge Formel in den Fällen (IST - IK) .LT. IL und (- IST - IK) .GT. IL programmiert:

LST = L0 * [IST] 2 [------] [IL + IK]

Im Fall (- IST - IK) .LE. IL .LE. (IST - IK) ist: LST = L0

Hierbei entspricht der Fortranname LST dem Namen L_{St} des Anhangs. L_{St} : Induktivität des Stufenkerns

Fortran: IK zulässig: IK .GE. 0D0 Voreinstellung: 2.00D0 Dimension: A Name(A): Ι_κ: Koerzitivstrom des Stufenkerns Fortran: IST zulässig: IST .GE. 0D0 Voreinstellung: 10.0D0 Dimension: A Name(A): Ist: Stufenstrom des Stufenkerns

Fortran: R zulässig: R .GT. 0D0 Voreinstellung: 10D0 Dimension: Ohm Name(A): R: Beschaltungswiderstand

Die RC-Beschaltung wird nur bei SIMTYP = 0 und SIMTYP = 2 berücksichtigt.

Fortran: C zulässig: C .GT. 0D0 Voreinstellung: 0.22D-6 Dimension: F Name(A): C: Kapazität des Beschaltungskondensators

Die RC-Beschaltung wird nur bei SIMTYP = 0 und SIMTYP = 2 berücksichtigt.

Fortran: L2 zulässig: L2.GE.0D0 Voreinstellung: 0.00D-6 Dimension: H Name(A): L₂: Parasitäre Induktivität der RC-Beschaltung

Die RC-Beschaltung wird nur bei SIMTYP = 0 und SIMTYP = 2 berücksichtigt.

Fortran: UD zulässig: UD .GE. 0D0 !!! bei SIMTYP = 1 zusätzlich UD .GT. 0D0 !!! Voreinstellung: 600.0D0 Dimension: V Name(A): U: Batteriespannung

Mit L₁ ,L_{St} ,R, C, L₂ und U_D sind folgende Formeln programmiert: (A.19.6), (A.19.7), (A.19.8)

Fortran: CPAR zulässig: CPAR .GE. 0D0 Voreinstellung: 0D0 Dimension: Farad Name(A): -: Parallelkondensator direkt zur Diode

> CPAR wird nur bei SIMTYP = 0 berücksichtigt. CPAR wurde in Abschnitt (A.19) nicht berücksichtigt.

5.45a. Parameter für eine nicht konstante Induktivität (nur beim Abschaltvorgang mit SIMTYP = 0)

Das Programm lässt die Simulation mit einer nicht konstanten frei wählbaren Induktivitätsverlauf zu. Hierzu ist der steuerbare Induktivität LSCH (Fortranname) in Reihe mit L1 vorgesehen. LSCH ist eine Funktion der Zeit und kann durch Eingabe von Zeitstützstellen LZEIT(j) mit zugehörigen Induktivitätswerten LWERT(j) beliebig vorgegeben werden. Das Programm interpoliert zwischen den Stützstellen mithilfe eines Splines. Wenn es bei einem sehr weiten Bereich der Widerstandswerte zu Instabilitäten kommt, wird der Spline für den Logarithmus der Widerstandswerte berechnet. Die Werte von LWERT sollten trotzdem nicht mehr als einen Faktor 3 auseinander liegen, um Unregelmäßigkeiten nach der Spline-Berechnung zu vermeiden. Auch sollte der erste Wert von LWERT nicht zu hoch sein. Die Spline-Interpolation wird unter den Bedingungen: LZEIT(1)=0D0 und KSCH .GE. 4 und keine Widerstandssprünge zu ein und dem selben Zeitpunkt, durchgeführt.

Bei Zeitwerten, die kleiner gleich dem Zeitwert der ersten Zeitstützstelle sind, wird der Widerstandswert der ersten Zeitstützstelle und bei Zeitwerten, die größer gleich dem Zeitwert der letzten Zeitstützstelle sind, wird der Widerstandswert dieser Zeitstützstelle zugewiesen.

Achtung: Wenn die Werte LWERT(j) nicht ausreichend gut geglättet sind und die Summe der Induktivitäten klein ist (z.B. < 1 nH), kann es ebenfalls zu unerwünschte und nicht realistische Schwingungen im Diodenstrom kommen.

Optionen bei der Eingabe der Induktivität

- 1. Eingabe nur je einer Zeitstützstelle und eines Widerstandswertes bewirkt eine konstante Induktivität. Dieser Widerstand kann auch null sein.
- Eingabe von Induktivitätssprüngen durch doppelte Angabe einer Zeitstützstelle mit verschiedenen Induktivitätsangaben. In diesem Fall wird für die lineare Interpolation nach rechts der zweite Widerstandswert, und für die lineare Interpolation nach links der erste Widerstandswert verwendet.

Parameter für den Verlauf der Induktivität

Die LÄNGE der Felder LZEIT und LWERT bestimmt das Programm automatisch anhand der eingegebenen Feldkomponenten. Nach jedem Laden des Simulators und vor Belegung mit Werten, zu denen auch die Voreinstellungen gehören, sind die Felder LZEIT und LWERT mit 0D0 besetzt.

ISCH ist die bei der Eingabe ermittelte aktuelle Feldgröße. Falls LZEIT(j) .EQ. 0D0 und LWERT(j) .NE. 0D0 für 2 .LE. j .LE. LSCH meldet das Programm "LZEIT ZU KLEIN". Wenn diese Meldung auftritt, kann es sein, dass nicht, wie verlangt, eine gleiche Anzahl von Stützstellen und Konzentrationen eingegeben wurden. Allerdings wird diese Meldung auch ausgegeben, falls LZEIT(j+1) .LT. LZEIT(j) für 1 .LE. j .LT. KSCH .

Falls LZEIT(j) .NE. 0D0 und LWERT(j) .EQ. 0D0 für 2 .LE. j .LE. KSCH geht das Programm von einer gewünschten Eingabe aus. Da nicht belegte Feldelemente nach dem Laden des Simulators mit 0D0 vorbelegt sind, erfährt der Benutzer in diesem Fall nicht, ob er zu wenige Konzentrationen eingegeben hat.

Daher muss der Benutzer unbedingt selbst kontrollieren, dass er für LZEIT und LWERT Felder mit gleicher Länge eingibt.

Es ist zu beachten, dass die maximale Feldgröße durch den Fortran-Parameter GR0 = 1000 begrenzt ist. Wird ein größeres Feld eingegeben, so werden die zu viel eingegebene Daten ignoriert. Eine Warnung wird ausgegeben.

Fortran: LZEIT zulässig: 0D0 .LE. LZEIT(j) .LE. LZEIT(j+1) für 1 .LE. j .LT. KSCH .LE. NMAX, LZEIT(KSCH) .LE. 100D0*TFIN # Hierbei ist TFIN das Zeitende der Simulation. LZEIT ist ein Feld der Länge 1 .LE. KSCH .LE. NMAX . Die Feldgrenzen sind variabel und richten sich nach den Eingabeelementen. (vgl. Kommentar oben) # Voreinstellung: 0D0 Dimension: s

Fortran: LWERT zulässig: 0D0 .LE. LWERT .LE. 1D0 # LWERT ist ein Feld mit LÄNGE 1 .LE: KSCH .LE. NMAX . Die zulässigen Werte sind komponentenweise zu verstehen # Voreinstellung: 0D0 Dimension: Henry

5.45b. Parameter für eine erzwungene Oszillation

Bedeutung der Eingabe für OS<ZILLATION>

Mit dieser Eingabe kann eine erzwungene Oszillation vorgegeben werden. Auch ist es möglich, nur eine Anregung für eine Oszillation vorzugeben.

Bedeutung der Eingabe von TI1, TI2, TI3, AMPL und FREQ. Diese Daten steuern die Änderung der Zwischenkreis- bzw. Batteriespannung.

Bei FREQ=0 wird nur die umhüllende Kurve verwendet. AMPL kann positive oder negative sein. Bei FREQ>0 wird eine Sinuskurve mit abgebildet. Bei FREQ<0 wird eine Rechteckkurve abgebildet. TI3 ist dann unwirksam.

Die Parameter sind:

Fortran: AMPL zulässig: -UD .LE. AMPL .LE. UD Voreinstellung: 0D0 Dimension: Volt Name(A): -: Amplitude der Schwingung

Fortran: FREQ zulässig: -1D11 .LE. AMPL .LE. 1D11 Voreinstellung: 0D0 Dimension: Hz Name(A): -: Frequenz der Schwingung

Fortran: TI1 zulässig: TI1.GE.0D0 Voreinstellung: 0D0 Dimension: sec. Name(A): -: Anfangszeitpunkt der Schwingung

Fortran: TI2 zulässig: TI2.GE.0D0 Voreinstellung: 0D0 Dimension: sec. Name(A): -: Dauer der Schwingung

Fortran: TI3 zulässig: TI3.GE.0D0 Voreinstellung: 0D0 Dimension: sec. Name(A): -: Anstiegszeit der Schwingung

5.46. Parameter für den nicht idealen Schalter der Beschaltung: (nur beim Abschaltvorgang mit SIMTYP = 0)

Parameter für die Nachbildung eines nicht idealen Schalters

Wie in Anhang A.19 beschrieben, lässt das Programm die Simulation eines nicht idealen Schalters für das Abschaltverhalten des Bauelementes zu. Hierzu ist der steuerbare Widerstand RSCH in Reihe mit dem Schalter vorgesehen. RSCH ist eine Funktion der Zeit und kann durch Eingabe von Zeitstützstellen RZEIT(j) mit zugehörigen Widerstandswerten RWERT(j) beliebig vorgegeben werden. Hierbei entspricht der Fortranname RSCH dem Namen R_{Sch} des Anhangs. Das Programm interpoliert zwischen den Widerstandsstützstellen mithilfe eines Splines. Wenn es bei einem sehr weiten Bereich der Widerstandswerte zu Instabilitäten kommt, wird der Spline für den Logarithmus der Widerstandswerte berechnet. Die Werte von RWERT sollten trotzdem nicht mehr als einen Faktor 3 auseinander liegen, um Unregelmäßigkeiten nach der Spline-Berechnung zu vermeiden. Auch sollte der erste Wert von RWERT nicht zu hoch sein. Die Spline-Interpolation wird unter den Bedingungen: RZEIT(1)=0D0 und ISCH .GE. 4 und keine Widerstandssprünge zu ein und dem selben Zeitpunkt, durchgeführt.

Bei Zeitwerten, die kleiner gleich dem Zeitwert der ersten Zeitstützstelle sind, wird der Widerstandswert der ersten Zeitstützstelle und bei Zeitwerten, die größer gleich dem Zeitwert der letzten Zeitstützstelle sind, wird der Widerstandswert dieser Zeitstützstelle zugewiesen.

Achtung: Wenn die Werte RWERT(j) nicht ausreichend gut geglättet sind und die Summe der Induktivitäten klein ist (z.B. < 1 nH), kann es ebenfalls zu unerwünschte und nicht realistische Schwingungen im Diodenstrom kommen. Ist der erste Wert von RWERT zu niedrig, dann kommt es direkt nach t=0 zu einem nicht realistischen Stromsprung in IDI.

Optionen bei der Eingabe des Schalterwiderstandes

- 1. Eingabe nur je einer Zeitstützstelle und eines Widerstandswertes bewirkt konstanten Schalterwiderstand. Dieser Widerstand kann auch null sein.
- Eingabe von Widerstandssprüngen durch doppelte Angabe einer Zeitstützstelle mit verschiedenen Widerstandsangaben. In diesem Fall wird für die lineare Interpolation nach rechts der zweite Widerstandswert, und für die lineare Interpolation nach links der erste Widerstandswert verwendet.

Parameter für den Verlauf des Schalterwiderstandes

Die LÄNGE der Felder RZEIT und RWERT bestimmt das Programm automatisch anhand der eingegebenen Feldkomponenten. Nach jedem Laden des Simulators und vor Belegung mit Werten, zu denen auch die Voreinstellungen gehören, sind die Felder RZEIT und RWERT mit 0D0 besetzt.

ISCH ist die bei der Eingabe ermittelte aktuelle Feldgröße. Falls RZEIT(j) .EQ. 0D0 und RWERT(j) .NE. 0D0 für 2 .LE. j .LE. ISCH meldet das Programm "RZEIT ZU KLEIN". Wenn diese Meldung auftritt, kann es sein, dass nicht, wie verlangt, eine gleiche Anzahl von Stützstellen und Konzentrationen eingegeben wurden. Allerdings wird diese Meldung auch ausgegeben, falls RZEIT(j+1) .LT. RZEIT(j) für 1 .LE. j .LT. ISCH .

Falls RZEIT(j) .NE. 0D0 und RWERT(j) .EQ. 0D0 für 2 .LE. j .LE. ISCH geht das Programm von einer gewünschten Eingabe aus. Da nicht belegte Feldelemente nach dem Laden des Simulators mit 0D0 vorbelegt sind, erfährt der Benutzer in diesem Fall nicht, ob er zu wenige Konzentrationen eingegeben hat.

Daher muss der Benutzer unbedingt selbst kontrollieren, dass er für RZEIT und RWERT Felder mit gleicher Länge eingibt.

Es ist zu beachten, dass die maximale Feldgröße durch den Fortran-Parameter GR0 = 1000 begrenzt ist. Wird ein größeres Feld eingegeben, so werden die zu viel eingegebene Daten ignoriert. Eine Warnung wird ausgegeben.

Fortran: RZEIT zulässig: 0D0 .LE. RZEIT(j) .LE. RZEIT(j+1) für 1 .LE. j .LT. ISCH .LE. NMAX, RZEIT(ISCH) .LE. 100D0*TFIN # Hierbei ist TFIN das Zeitende der Simulation. RZEIT ist ein Feld der Länge 1 .LE. ISCH .LE. NMAX . Die Feldgrenzen sind variabel und richten sich nach den Eingabeelementen. (vgl. Kommentar oben) # Voreinstellung: 0D0 Dimension: s

Fortran: RWERT zulässig: 0D0 .LE. RWERT # RWERT ist ein Feld mit LÄNGE 1 .LE: ISCH .LE. NMAX . Die zulässigen Werte sind komponentenweise zu verstehen # Voreinstellung: 0D0 Dimension: Ohm

Im nachfolgenden Abschnitt werden die Parameter für ein Schalttransistormodell mit Exponentialfunktionen beschrieben. Dieses Modell wird dem obenstehenden Widerstandsmodell automatisch überlagert. Wenn RWERT gleich null ist, gilt nur noch das Schalttransistormodell mit Exponentialfunktionen.

Parameter für das Schalttransistormodell mit Exponentialfunktionen

Oben stehendem Bild zeigt ein Beispiel von dem Widerstandsverlauf eines Schalttransistors während eines Einschaltvorganges. Schwarz = $|I_d|$ = Diodenstrom, logarithmisch dargestellt, Blau = Näherung des Widerstands vom Schalttransistor mit zwei Exponentialfunktionen. x-Achse = Zeit in ns.

Beispiele für die Widerstände R1 und R2 in der Näherungsgleichung für den Widerstandsverlauf des Schalttransistors. Hier in T = 20 °C, R1 und R2 werden als Funktion von (UD,IC,Temp) angegeben. Die Gleichung wird weiter unten angegeben.

Wichtig ist, dass der Widerstandsverlauf durch den Schalttransistor so gut wie möglich nachgebildet wird, wenn der Strom durch die Diode noch groß ist, damit der Fehler in der Spannung, die an der Diode ansteht, so klein wie möglich gehalten wird.

Für Abweichungen, die durch dieses Modell hier nicht abgedeckt sind, steht der frei programmierbaren Widerstandsverlauf zur Verfügung. Das kann dann zum Beispiel wie folgt aussehen:

!BEISPIEL FREIWAEHLBARER WIDERSTANDSVERLAUF RZE<IT>= 200D-9, 300D-9, 750D-9 RW<ERT>= 0D0, 0.35D0, 0D0

Wichtig ist dabei, dass dieser zusätzlichen Verlauf nur hinzu addiert werden kann. Der Widerstandsverlauf des Schalttransistors ist somit ggf. an der untersten Toleranzgrenze anzugeben und der Rest wird mit RZE und RW hinzugegeben.

Die Gleichung für den Widerstandsverlauf des Schalttransistors ist:

```
TEXPTR=TEXPRF+TEXPR0*EXP(-T/TEXPT0)+
TEXPR1*EXP(-T/TEXPT1)+TEXPR2*EXP(-T/TEXPT2)
```

Hierin sind typisch: TEXPRF=7.5D-3, TEXPR0=5D6, TEXPR1=21590, TEXPR2=4.76 Ohm und TEXPT0=5D-9, TEXPT1=12.3D-9, TEXPT2=118D-9 Sek. T = Zeit Es gibt folgende Eingabeparameter:

Fortran: TEXPRF zulässig: 0D0 .LE. TEXPRF .LT. 1D2 Voreinstellung: 0D0 Dimension: Ohm Name(A): -: stationärer Durchlasswiderstand des Schalttransistors

Fortran: TEXPR0 zulässig: 0D0 .LE. TEXPR0 .LT. 1D10 Voreinstellung: 0D0 Dimension: Ohm Name(A): -: dynamischer Durchlasswiderstand Nr. 0 des Schalttransistors

Fortran: TEXPT0 zulässig: 1D-12.LE.TEXPT0.LT.1D0 Voreinstellung: 5D-9 Dimension: Sek Name(A): -: Abklingzeitkonstante vom dynamischen Durchlasswiderstand Nr. 0 des Schalttransistors

Fortran: TEXPR1 zulässig: 0D0.LE.TEXPR1.LT.1D10 Voreinstellung: 0D0 Dimension: Ohm Name(A): -: dynamischer Durchlasswiderstand Nr. 1 des Schalttransistors

Fortran: TEXPT1 zulässig: 1D-12.LE.TEXPT1.LT.1D0 Voreinstellung: 12.3D-9 Dimension: Sek Name(A): -: Abklingzeitkonstante vom dynamischen Durchlasswiderstand Nr. 1 des Schalttransistors

Fortran: TEXPR2 zulässig: 0D0.LE.TEXPR2.LT.1D10 Voreinstellung: 0D0 Dimension: Ohm Name(A): -: dynamischer Durchlasswiderstand Nr. 2 des Schalttransistors

Fortran: TEXPT2 zulässig: 1D-12.LE.TEXPT2.LT.1D0 Voreinstellung: 118D-9 Dimension: Sek Name(A): -: Abklingzeitkonstante vom dynamischen Durchlasswiderstand Nr. 2 des Schalttransistors

Der Eintrag im Eingabedatensatz ist: zum Beispiel: ! TEXPRF, TEXPRO, TEXPTO, TEXPR1, TEXPT1, TEXPR2, TEXPT2 TREXP=7.5D-3, 0D0, 5D-9, 21590D0, 12.3D-9, 4.76D0, 118D-9

Bemerkung: eine typische Induktivität, die in dieser Schaltung vorgefunden wird, wäre: L1=35 nH

5.47. Parameter für den Strom:

Fortran: I0 zulässig: ABS(I0) / AQUER .LE. 1D5 !!! bei SIMTYP = 0,3: I0 .GE. 0D0 bei SIMTYP = 1,2,5: I0 .GT. 0D0 bei SIMTYP = 4: I0 .NE. 0D0 !!! # Da für alle Simulationsberechnungen nur die Stromkonzentrationen verwendet werden, wird überprüft, ob diese zulässig sind # Voreinstellung: 300.0D0 Dimension: A Name(A): SIMTYP=0,1,3: I_F: Anfangsstrom bzw. Bezeichnung als stationärer Vorwärtsstrom SIMTYP=2,4: -: Endwert des Stromes SIMTYP=5: -: Spitzenstrom

5.48. Parameter für die (Anfangs-)Temperatur:

Fortran: TEMP0 zulässig: -273.15 .LT. TEMP0 .LT. 726.85D0 Voreinstellung: 125.0D0 Dimension: Grad Celsius Name(A): T₀: Anfangstemperatur des Bauelementes und zugrunde gelegte konstante Umgebungstemperatur während der Simulation

5.49. Parameter für das Zeitausgabegitter der 3DPLOTs:

Das Zeitausgabegitter für 3DPLOTs

Das im Folgenden beschriebene Zeitausgabegitter wird auch für die Ausgabe am Bildschirm verwendet, wobei ein Zeitgitterpunkt einer FOLGENUMMER entspricht.

Für den Eingabeparameter DTOUT gibt es drei Möglichkeiten:

1. DTOUT .GE. 1

Das Zeitausgabegitter wird vom Programm äquidistant gewählt. Hierbei ist der erste Zeitausgabegitterpunkt: TANF und der letzte Zeitausgabegitterpunkt: TFIN. Der Abstand von zwei aufeinander folgenden Zeitausgabegitterpunkten ist der Wert

(TFIN - TANF) / MAX ((DTOUT - 1), 1) .

Die Kenntnis der Berechnung des Zeitausgabegitters ist im Fall eines RESTART-Laufes, der weiter unten beschrieben wird, von Bedeutung. In diesem Fall erfolgt die Gitterberechnung nämlich mit einem neu berechneten Zeitausgabegitterabstand, wie folgt, je nach Abbruchursache des Rechenlaufes:

- (a) falls der Rechenlauf kontrolliert endete und TFIN bereits erreicht war, oder im Dialogbetrieb STOP eingegeben wurde: Mit den für den Restart neu belegten Parametern TANF, TFIN und DTOUT wird der Gitterabstand berechnet und ist der Abstand von zwei aufeinander folgenden Gitterpunkten für alle Punkte, die dem vorletzten, vor dem kontrollierten Ende bearbeiteten Gitterpunkt, nachfolgen. Allerdings trifft dies i.a. nicht für den beim RESTART-Lauf letzten Ausgabezeitpunkt TFIN zu.
- (b) falls der Rechenlauf wegen Überschreiten der Rechenzeitbegrenzung oder Rechnerausfall abbrach: Vorgehensweise wie bei (a) nur wird der erste Zeitausgabegitterpunkt, der bei dem RESTART-Lauf berechnet wird, noch mit dem vor dem Abbruch bestimmten Gitterabstand berechnet.

<u>3. DTOUT .LE. -1</u>

Die Ausgabezeitpunkte werden abgezählt. Die Zahl der Zeitschritte zwischen zwei Ausgabepunkte ist: -DTOUT

Fortran: TANF zulässig: 0D0 .LE. TANF .LE. TFIN # TFIN wird weiter unten beschrieben # Voreinstellung: 0.00D-6 Dimension: s Name(A): -: erster Punkt des Zeitausgabegitters für 3DPLOTs

Fortran: DTOUT zulässig: -10000 .LE. DTOUT .LE. 10000 Voreinstellung: 2 Name(A): -: Anzahl der Punkte des Zeitausgabegitters für 3DPLOTs

Fortran: TFIN zulässig: TFIN .GE. 0D0 Voreinstellung: 0.00D-6 Dimension: s Name(A): -: Zeitende der Bauelementesimulation und letzter Punkt des Zeitausgabegitters für 3DPLOTs

5.50. Die Zeitkonstante ZK und die Zeitschrittweitenbegrenzungen:

Fortran: ZK zulässig: 1D-12 .LE. ZK .LE. 1D-3 Voreinstellung: 25.0D-9 Dimension: s Name(A): -: Zeitkonstante bei SIMTYP = 1 und 2

Fortran: DTMAXI zulässig: MAX(DTMIN,1D-12) .LE. DTMAXI .LE. 1D3 Voreinstellung: 1D-3 Dimension: s Name(A): -: Maximalwert der Zeitschrittweite DT

Fortran: DTMINI zulässig: 1D-30 .LE. DTMINI .LE. 1D-3 Voreinstellung: 1D-16 Dimension: s Name(A): -: Minimalwert der Zeitschrittweite DT. Wenn die Zeitschrittweite auf DTMINI begrenzt wird, dann wird der Konvergenzparameter CONVGD auf .TRUE. gesetzt. Die Parameter KONV(1) bis KONV(6) werden nicht verändert und zeigen an, ob Konvergenz tatsächlich gegeben ist oder nicht.

5.51. Logische Parameter zur Programmsteuerung:

Fortran: DIALOG zulässig: DIALOG = F oder T # DIALOG = F: Hintergrundlauf, kein Aufruf von SUBPSE, Schnelldruckerausgabe DIALOG = T: Dialogbetrieb, Terminal- Ein- und Ausgabe und Schnelldruckerausgabe # Voreinstellung: T Name(A): -: Selektor für Ausgabe

Fortran: DISOUT zulässig: DISOUT = F oder T

DISOUT = F: Ausgabe von $\frac{200 * (N(L) - N(L-1))}{N(L) + N(L-1)}$ am Schnelldrucker

DISOUT = T: Ausgabe von 200 * (N(L) - N(L-1)) am Schnelldrucker und falls DIALOG=T N(L) + N(L-1) zusätzlich am Bildschirm #

Voreinstellung: F

Name(A): -: Selektor für Ausgabe der Elektronenkonzentrationsverhältnisse im thermischen Gleichgewicht bei Temperatur TEMP0. Diese Werte können als Kontrolle des eingegebenen Ortsdiskretisierungsgitters in den stark dotierten Gebieten oder an den pn-Übergängen herangezogen werden. Falls der Wert im Intervall [-67,67] liegt, kann von einer für die Simulation ausreichend feinen Gitterwahl ausgegangen werden, sonst sollte ein neues Ortsdiskretisierungsgitter eingegeben werden.

Fortran: ZKURZ zulässig: ZKURZ = F oder T # ZKURZ = F: vollständige Datenausgabe ZKURZ = T: verkürzte Datenausgabe # Voreinstellung: F Name(A): -: Selektor für Art der Datenausgabe

Fortran: RSTART zulässig: RSTART=F oder T # RSTART=F: Neuer Rechenlauf RSTART=T: Ein Rechenlauf wird wieder aufgenommen, Bezeichnung als RESTART-Lauf # Voreinstellung: F Name(A): -: Selektor für Art des Rechenlaufes

Achtung:

Wird ein RESTART-Lauf durchgeführt, werden nach dem Lesen der RESTART-Datei DATRST.DAT folgende Werte aus der eventuell geänderten Eingabedatei "Adios-input.dat"- Eingabedatei gelesen: CPUMAX, TANF, DTOUT, TFIN, DIALOG, ZKURZ und RSTART.

Eine neue Eingabe von TANF kann nach einem Restart verwendet werden, um ein neues Zeitausgaberaster zu definieren. In diesem Fall muss TANF gleich TFIN des vorherigen Simulationslaufes gesetzt werden. Ein falscher Wert von TANF kann zu unerwünschte Ausgabegitter führen. TANF wird in ADIOS nicht weiter überprüft.

Wenn der oben beschriebene Zeitpunkt TFIN bei der Simulation erreicht wird, bricht das Programm stets den Rechenlauf ab. Stellt der Benutzer fest, dass er noch Daten aus der Bauelementesimulation nach dem Zeitpunkt TFIN benötigt, kann er dies nach Vergrößerung von TFIN mit einem RESTART-Lauf erreichen. Hierbei ist zu beachten, dass auch bei einem RESTART-Lauf das Zeitdiskretisierungsgitter für die 3DPLOT Ausgabe neu berechnet wird, und zwar wie in Abschnitt 5.49 beschrieben.

Wünscht der Benutzer einen für die Ausgabe äquidistant aufbereiteten 3DPLOT, muss er bei einem RESTART-Lauf TANF, TFIN und DTOUT geeignet wählen. Unbedingt sollte der Benutzer jedoch darauf achten, dass RSTART richtig belegt ist, da im Fall RSTART=F eine völlige Neuberechnung aller Daten erfolgt!

Eine neue RESTART-Datei erzeugt das Programm alle 3600 s. automatisch. Das Programm nimmt somit alle 3600 s. eine Datensicherung vor. Bei TFIN=0 wird keine RESTART-Datei erzeugt. (Zeiteinstellung mit dem Parameter RES in HP-ADIOS).

Bei einem Rechnerabsturz unter Windows95 oder 98 kann es aber passieren, dass auf die erzeugte Dateien DATPX.DAT, DATPT.DAT und DATRST.DAT nicht zugegriffen werden kann. Dann muss der Rechenlauf vollständig wiederholt werden.

Bei einer fehlerhaften Dateneingabe wird die RESTART-Datei gelöscht. Bevor einen RESTART-Lauf gestartet wird, ist daher eine Datensicherung von DATPX.DAT, DATPT.DAT und DATRST.DAT sehr zu empfehlen.

5.52. Logische Parameter zur Steuerung der Simulationsmodelle:

Fortran: LTEMP zulässig: LTEMP = F oder T # LTEMP = F: Temperatur bleibt konstant =TEMP0 während der gesamten Simulation LTEMP = T: dynamische Temperaturberechnung # Voreinstellung: T Name(A): -: Selektor für Temperaturberechnung innerhalb des Bauelementes Fortran: LOGAUG zulässig: LOGAUG = F oder T # LOGAUG = F: Augerrekombination wird bei der Simulation nicht berücksichtigt. LOGAUG = T: Augerrekombination wird bei der Simulation berücksichtigt # Voreinstellung: T Name(A): -: Selektor für Augerrekombination bei der Bauelementesimulation Fortran: BGNNC zulässig: BGNNC = F oder T # BGNNC = F: Bandgapnarrowing beeinflusst die Leitungsbandkante Ec nicht. BGNNC = T: Bandgapnarrowing beeinflusst die Leitungsbandkante Ec # Voreinstellung: T Name(A): -: Selektor für Bandgapnarrowing im Hinblick auf die Leitungsbandkante Fortran: BGNNV zulässig: BGNNV = F oder T # BGNNV = F: Bandgapnarrowing beeinflusst die Valenzbandkante E nicht. BGNNV = T: Bandgapnarrowing beeinflusst die Valenzbandkante E # Voreinstellung: T Name(A): -: Selektor für Bandgapnarrowing im Hinblick auf die Valenzbandkante Fortran: LOGEPS zulässig: LOGEPS = F oder T # vgl. Kommentar oben # Voreinstellung: F

Bei der Berechnung der dielektrischen Konstanten ist die Belegung von LOGEPS wesentlich:

Name(A): -: Selektor für die Abhängigkeit der dielektrischen Konstanten von der Dotierung

Falls LOGEPS=T, dann:

Diese Gleichung ist analog zu (A.1.1) im Anhang, wobei: A1 = (EPSR + 2) * (4 * EPSR - 1), A2 = 9 * EPSR und

 $\label{eq:alpha} \begin{aligned} & \alpha = \frac{1.907 \, ^* \, 10^{-20} \, ^* \, \text{cm}^2}{\text{MAX} \, [\text{1D-30}, \, 1 - 4.698 \, ^* \, 10^{-7} \, ^* \, \text{N}_{\text{St}^{1/3}}]} \end{aligned} \tag{A.1.2}$

(Vgl. Tabelle (A.1.2) und Kommentar)

Mit der Bildung der Maxima wird bei der Programmausführung eine Division durch null ausgeschlossen. Mit der Bildung des Minimums wird EPS auf 1D3*EPS0 begrenzt.

Hierbei entspricht EPS0 dem Namen ϵ_0 des Anhanges, EPSR dem Namen ϵ_r des Anhanges sowie EPS dem Namen des Anhanges.

£0	: dielektrische Konstante des Vakuums
11.7 = ϵ_{r}	: relative dielektrische Konstante für Silizium
3	: dielektrische Konstante für Silizium

Die Möglichkeit ε als Funktion der Dotierung zu berücksichtigen wurde nur zu Testzwecken geschaffen. Die Auswirkung auf die Simulation ist nämlich vernachlässigbar (vgl. Anhang A.4).

Fortran: AVA zulässig: AVA=F oder T # AVA=F: Stoßionisation wird bei der Simulation nicht berücksichtigt. AVA=T: Stoßionisation wird bei der Simulation berücksichtigt # Voreinstellung: T Name(A): -: Selektor für die Stoßionisation

Fortran: LOGMUE zulässig: LOGMUE=F oder T # LOGMUE=F: Das Unterprogramm MUE wird nicht benützt. LOGMUE=T: Das Unterprogramm MUE wird zur Berechnung der Beweglichkeiten herangezogen # Voreinstellung: T Name(A): -: Selektor für Benutzung des Unterprogrammes MUE, welches die Beweglichkeiten der Ladungsträger an hohe elektrische Feldstärken anpasst.

Falls LOGMUE=T und Bedingung (A.14.9) erfüllt, d. h. sign(E) = sign(j), wird die Gleichung (A.14.2) zur Anpassung der Beweglichkeiten an hohe elektrische Feldstärken verwendet:

 $\mu = \frac{\mu_0}{[1 + (\mu_0 * |E| / v_{D max})^{\beta}]^{1/\beta}}$ (A.14.2)

Die Berechnung nach der Formel (A.14.2) führt das Unterprogramm MUE durch. wird im Unterprogramm MU berechnet. Sind die oben angegebenen Bedingungen nicht erfüllt, wird nur $\mu = \mu_0$ gesetzt.

Hierbei ist:

j : Stromkonzentration der Ladungsträger, für die die Beweglichkeit berechnet werden soll

v_{Dmax} : maximale Driftgeschwindigkeit der Ladungsträger, für die die Beweglichkeit berechnet werden soll

μ₀ : Beweglichkeit der jeweiligen Ladungsträger bei niedrigen elektrischen Feldstärken

μ : Beweglichkeit der jeweiligen Ladungsträger

β : Exponent für die jeweiligen Ladungsträger

Die für die Berechnung von $v_{D max}$, μ_0 und β nötigen Parameter werden in den Abschnitten 5.9 und 5.10 beschrieben.

5.53. Parameter zur Steuerung der Ausgabe bei den 2DPLOTs:

Bei der Ausgabe von 2DPLOTs kann die sechste Variable beim Ablauf von ADIOS frei gewählt werden. (Siehe auch Abschnitt 8.1)

Fortran: AUSTYP

zulässig: UL: Spannung Induktivität IAN: Strom durch den Anodenkurzschluss

UAN: Spannung über den Anodenkurzschluss

IRG: Strom durch den Gatewiderstand UTR: Spannung über den Schalttransistor Voreinstellung: UL Name(A): -: Auswahlparameter für die 2DPLOTs

5.54. Parameter zur Festlegung des Gate/Basis-Anschlusses, des Basiswiderstandes und des Basisstromes:

Die Anschlussstelle der Basis bzw. des Gates wird durch den Parameter DXGATE auf einem Hauptgitterpunkt des Gitters festgelegt. Hierbei wird DXGATE ab dem rechten Metall-Silizium-Übergang gemessen. Der Hauptgitterpunkt des Anschlusses wird programmintern durch die variable IGATE bezeichnet. Zwischen den Anschlüssen X(IGATE) und X(NMAX+1) = rechten Metall-Silizium-Übergang ist ein Widerstand mit dem Wert RG geschaltet. Siehe hierzu auch die Definition auf der Seite 119.

Fortran: DXGATE zulässig: 0D0 .LE. DXGATE .LE. X(NMAX+1) (=Maximale Bauelementdicke) Voreinstellung: 10D-4 Dimension: cm Name(A): -: Anschlussstelle für den Gate/Basis-Anschluss

Fortran: RG zulässig: 1D-12 .LE. RG .LE. 1D30 Voreinstellung: 1D6 Dimension: Ohm Name(A): -: Kurzschlusswiderstand des Gates bzw. der Basis

Parameter für den Gate- bzw. Basis-Stromverlauf

Das Programm ADIOS lässt eine mit der Zeit variierende Vorgabe eines Gate- bzw. Basis-Stromes zu. Durch Eingabe von den Zeitstützstellen IGZEIT(j) mit den zugehörigen Stromwerten IGWERT(j) kann der Stromverlauf beliebig vorgegeben werden. Die Eingabe des Gatestromes ist nur bei der OCVD-Simulation (SIMTYP = 1) unwirksam. Das Programm interpoliert zwischen den Stromstützstellen linear. Daher geht in die Berechnung der Stromwerte, zu einem von der Simulation verlangten Zeitpunkt, jeweils nur die dem jeweiligen Zeitpunkt links und rechts nächstliegende Stromstützstelle ein.

Allerdings wird Zeitwerten, die kleiner gleich dem Zeitwert der ersten Zeitstützstelle sind, der Stromwert der ersten Zeitstützstelle und Zeitwerten, die größer gleich dem Zeitwert der letzten Zeitstützstelle sind, der Stromwert dieser Zeitstützstelle zugewiesen.

Optionen bei der Eingabe des Stromverlaufes

- 1. Eingabe nur je einer Zeitstützstelle und eines Stromwertes bewirkt konstanten Stromverlauf. Dieser Strom kann auch null sein.
- 2. Eingabe von Stromspringen durch doppelte Angabe einer Zeitstützstelle mit verschiedenen Stromangaben. In diesem Fall wird für die lineare Interpolation nach rechts der zweite Stromwert, und für die lineare Interpolation nach links der erste Stromwert verwendet. Diese Möglichkeit ist aus Konvergenzgründen nicht empfehlenswert.

Parameter für den Verlauf des Stromes

Die Länge der Felder IGZEIT und IGWERT bestimmt das Programm automatisch anhand der eingegebenen Feldkomponenten. Nach jedem Laden des Simulators und vor Belegung mit Werten, zu denen auch die Voreinstellungen gehören, sind die Felder IGZEIT und IGWERT mit 0D0 besetzt.

IGN ist die bei der Eingabe ermittelte aktuelle Feldgröße. Falls IGZEIT(j) .EQ. 0D0 und

IGWERT(j) .NE. 0D0 für 2 .LE. j .LE. IGN meldet das Programm "IGZEIT ZU KLEIN". Wenn diese Meldung auftritt, kann es sein, dass nicht, wie verlangt, eine gleiche Anzahl von Stützstellen und Konzentrationen eingegeben wurden. Allerdings wird diese Meldung auch ausgegeben, falls IGZEIT(j+1) .LT. IGZEIT(j) für 1 .LE. j .LT. IGN.

Falls IGZEIT(j) .NE. 0D0 und IGWERT(j) .EQ. 0D0 für 2 .LE. j .LE. IGN geht das Programm von einer gewünschten Eingabe aus. Da nicht belegte Feldelemente nach dem Laden des Simulators mit 0D0 vorbelegt sind, erfährt der Benutzer in diesem Fall nicht, ob er zu wenig Konzentrationen eingegeben hat.

Daher muss der Benutzer unbedingt selbst kontrollieren, dass er für IGZEIT und IGWERT Felder mit gleicher Länge eingibt.

Es ist zu beachten, dass die maximale Feldgröße durch den Fortran-Parameter GR0 = 1000 begrenzt ist. Wird ein größeres Feld eingegeben, so werden die zu viel eingegebene Daten ignoriert. Eine Warnung wird ausgegeben.

Fortran: IGZEIT zulässig: 0D0 .LE. IGZEIT(j) .LE. IGZEIT(j+1) für 1 .LE. j .LT. IGN .LE. NMAX, IGZEIT(IGN) .LE. TFIN # Hierbei ist TFIN das Zeitende der Simulation. IGZEIT ist ein Feld der Länge 1 .LE. IGN .LE. NMAX . Die Feldgrenzen sind variabel und richten sich nach den Eingabeelementen. (vgl. Kommentar oben) # Voreinstellung: 0D0 Dimension: s

Fortran: IGWERT zulässig: 0D0 .LE. IGWERT # IGWERT ist ein Feld mit LÄNGE 1 .LE. IGN .LE. NMAX . Die zulässigen Werte sind komponentenweise zu verstehen # Voreinstellung: 0D0 Dimension: A

5.55. Parameter zur Festlegung Anodenkurzschlusses:

Die Anschlussstelle des Anodenkurzschlusses wird durch den Parameter DXANOD auf einem Hauptgitterpunkt des Gitters festgelegt. Hierbei wird DXANOD ab dem linken Metall-Silizium-Übergang gemessen. Der Hauptgitterpunkt des Anschlusses wird programmintern durch die variable IANOD bezeichnet. Zwischen den Anschlüssen X(1) und X(IANOD) = linken Metall-Silizium-Übergang ist ein Widerstand mit dem Wert RAN geschaltet. Siehe hierzu auch die Definition auf der Seite 119.

Fortran: DXANOD zulässig: 0D0 .LE. DXANOD .LE. X(NMAX+1) (=Maximale Bauelementdicke) Voreinstellung: 10D-4 Dimension: cm Name(A): -: Anschlussstelle für den Anodenkurzschluss

Fortran: RAN zulässig: 1D-12 .LE. RAN .LE. 1D30 Voreinstellung: 1D6 Dimension: Ohm Name(A): -: Widerstand des Anodenkurzschlusses

Fortran: RL1PAR zulässig: 1D-12 .LE. RL1PAR .LE. 1D30 Voreinstellung: 1D12 Dimension: Ohm Name(A): -: Parallelwiderstand zu L1

6. Die Beschreibung der Ausgabedaten:

Die Beschreibung der Ausgabedaten erfolgt in einer den Eingabedaten entsprechenden Struktur, bis auf das Fehlen der nur für Eingabedaten relevanten Voreinstellungen und zulässigen Werte. Bei der Beschreibung der Ausgabedaten unterscheiden wir zwischen globalen Daten, d. h. solchen, die für die gesamte Bauelementesimulation gelten und lokalen Daten, d. h. solchen, die nur für den gewählten Haupt- oder Zwischengitterpunkt gültig sind.

6.1. Die Ausgabe von globalen Daten am Bildschirm:

Die Bildschirmbreite ist: 80 Zeichen, die Höhe 25 Zeilen.

Fortran: FOLGENUMMER

Name(A): -: laufende Nummer der ausgegebenen Zeitgitterpunkte ermöglicht eindeutige Zuordnung der Ausgabedaten zu 3DPLOTs, Nummerierung beginnt mit 0. 0 ist stets die Folgenummer des thermischen Gleichgewichts, welches nur bei TFIN=0 ausgegeben wird.

Fortran: CPU-ZEIT Dimension: s Name(A): -: bisher verbrauchte Rechenzeit

Fortran: ZEITSCHRITTE

Name(A): -: Zahl der Zeitschritte, die zwischen dem gerade ausgegebenen Zeitgitterpunkt und dem vorhergehenden benötigt wurden.

Fortran: T

Dimension: s

Name(A): -: Zeitpunkt, für den die ausgegebenen Simulationswerte berechnet wurden

Fortran: DT

Dimension: s

Name(A): -: Aktuelle Zeitschrittweite. Achtung: In Unterprogramm SWST wird für die Zeitschrittweite die Variable H verwendet. H wird kleiner als DT sein, falls der Zeitabstand zu dem nächsten Ausgabezeitpunkt kleiner als DT ist.

Fortran: IT.-SCHRITTE

Name(A): -: Zahl der Iterationsschritte für thermisches Gleichgewicht oder stationären Zustand, in der Dynamik Zahl der Iterationsschritte zwischen zwei Zeitgitterpunkten

Fortran: UDIO Dimension: V Name(A): U_{Di}: Spannung, die an dem Bauelement abfällt, wird nach (A.17.3) berechnet.

Fortran: UDIF Dimension: V

Name(A): U_{dif}: Diffusionsspannung des Bauelementes, wird nach (A.17.2) berechnet.

Fortran: UL Dimension: V

Name(A): U_{L1} + U_{LSt}: Spannung, die über beide Spulen zusammen abfällt, wird nach (A.19.5) berechnet.

Fortran: IDI Dimension: A

Name(A): i_{Di}: Strom, der durch das Bauelement fließt.

Fortran: JDI Dimension: A/cm² Name(A): j₁: Gesamtstromdichte der Diode, wird als i_{Di} / AQUER berechnet.

Fortran: IL Dimension: A Name(A): i∟: Strom, der durch die Spulen fließt, wird nach (A.19.6) berechnet.

Fortran: IG Dimension: A Name(A): -: Gate- bzw. Basis-Strom

Fortran: UG Dimension: V Name(A): -: Spannung zwischen dem Gate- bzw. Basis-Anschluss und dem rechten Metall-Silizium-Kontakt.

Fortran: IRG Dimension: A Name(A): -: Strom durch den Gatewiderstand RG

Fortran: IAN Dimension: A Name(A): -: Strom durch den Anodenwiderstand RAN

Fortran: UAN Dimension: V Name(A): -: Spannung zwischen dem Anschluss des Anoden-Widerstandes und dem linken Metall-Silizium-Kontakt.

Fortran: IC Dimension: A Name(A): i_c: Strom, der durch den Kondensator fließt, wird nach (A.19.7) und (A.19.8) berechnet.

Fortran: UC Dimension: V Name(A): U_c: Spannung, die über den Kondensator abfällt, wird nach (A.19.7) und (A.19.8) berechnet.

Fortran: HP Dimension: cm⁴/s Name(A): h_p: Rekombinationsparameter des p -Emitters, wird am pn-Übergang nach (A.16.15) berechnet.

Fortran: HN Dimension: cm⁴/s Name(A): h₀: Rekombinationsparameter des n -Emitters, wird am nn-Übergang nach (A.16.16) berechnet

Fortran: PDIO Dimension: W Name(A): P: Summe aller im Anhang A.18 aufgeführten Verlustleistungsanteile, die am Bauelement entstehen, genauer siehe (A.18.23) und (A.18.24)

Fortran: U*I

Dimension: W Name(A): ∑ U * I: Produkt von Strom durch das Bauelement und Spannungsabfall über das Bauelement. Dient bei reine Dioden als Kontrollgröße, da im stationären Fall gilt: U_{Di} * I_{Di} = PDIO, vgl. Anhang A.18

Fortran: WDIO Dimension: W*s Name(A): W_{Di}: Zeitintegral von 0 bis T über PDIO, bisher entstandene Verlustarbeit in der Diode.

Fortran: WR Dimension: W*s Name(A): W_R: Verlustarbeit des Beschaltungswiderstandes. wird nach (A.19.18) berechnet.

Fortran: QRR Dimension: μAs Name(A): Q_{RR}: wird nach (A.19.16) berechnet, wird als Speicherladung der Diode im Anhang definiert.

6.2. Die Ausgabe von lokalen Daten am Bildschirm:

Die Ausgabe ist auf einer alten Bildschirmbreite von 80 Zeichen und einer Höhe von 25 Zeilen ausgelegt.

Die Ausgabe von lokalen Daten am Bildschirm erfolgt nur dann, wenn ZKURZ=T (vgl. Die Ausgabesteuerung bei der Ausgabe von lokalen Daten am Bildschirm, Abschnitt 5.51)

Fortran: N Dimension: cm⁻³ Name(A): n: Elektronenkonzentration

Fortran: P Dimension: cm⁻³ Name(A): p: Löcherkonzentration

Fortran: EFELD Dimension: V/cm Name(A): E: elektrische Feldstärke

Fortran: JN Dimension: A/cm² Name(A): j_n: Elektronenstromdichte

Fortran: JP Dimension: A/cm² Name(A): j_p: Löcherstromdichte

Fortran: TEMP Dimension: K Name(A): T: Temperatur

Fortran: DX (DELTA-X) Dimension: cm Name(A): dx_i: vgl. Abschnitt 5.8 Nach dieser Ausgabe erscheint die Frage: Deutsch: Eingabe: +(+++)/*(***) = naechster Schritt oder S/s = STOP oder EINGABE = Weiter

Englisch: enter: +(+++)/*(***) = next step(s) or S/s = STOP or ENTER = resume

Sie hierzu weiter Abschnitt 7.1 über den Dialogbetrieb.

Bei Eingabe von S erscheint eine Abbruchmeldung und die verbrauchte CPU-Zeit in Sek.

Bei dynamische Simulationen erscheint nach Eingabe von * folgende Zeile mit Kontrolldaten zu jedem Zeitpunkt T (in s.) wenn ZKURZ=F:

Т	Zeit in sec.
Н	Zeitschrittweite in sec. in Unterprogramm SWST, vgl. auch Abschnitt 6.1 (DT-Beschreibung)
DELTA	Relativer Fehler zwischen Prädiktor- und Korrektor-Schritt in Unterprogramm UPDATE
CONVGD	Konvergenzparameter. CONVGD=DELTALE.1D0 Bedeutung:
	CONVGD=T: Verdopplung der Zeitschrittweite nach Erfüllung weiterer Konvergenzkriterien. Bei CONVGD=T
	werden die Grenzwerte der Zeitschrittweite DTMAXO und DTMINO aktualisiert.
	CONVGD=F: Halbierung der Zeitschrittweite
KONV	6 weitere Konvergenzparameter, die in den Unterprogrammen TDYN und UPDATE zu Diagnosezwecken gesetzt und ausgegeben werden:

KONV(1): PREDIKTOR UEBERWACHUNG

KONV(2): STROM UEBERWACHUNG

KONV(3): TEMPERATURBERECHNUNG IN UP-TDYN

KONV(4): ITERATIONS UEBERWACHUNG

KONV(5): ZAEHL .GE. 4

KONV(6): KORREKTOR-PREDIKTOR VERGLEICH

6.3. Datenausgabe auf dem Schnelldrucker:

Datei: Adios-output.dat Ausgabebreite: 130 Zeichen, davon ist das erste Zeichen ein Druckersteuerzeichen. Maximal 70 Zeilen pro Seite.

Auf dem Schnelldrucker werden alle Eingabedaten zu Kontrollzwecken ausgegeben. Ebenso werden Daten, die zur Beurteilung des Simulationsergebnisses nötig sein könnten, ausgegeben. Im Folgenden werden nur die Ausgabedaten, die nicht selbsterklärend sind, erläutert. Der Index einer Feldkomponente entspricht genau der Zahl, die an gleicher Position in der angegebenen Belegungsübersicht steht. Ob es sich bei den angegebenen Feldern um Werte für Zwischengitterpunkte oder Hauptgitterpunkte handelt, ist leicht an der Feldgröße, die für Zwischengitterpunkte um 1 größer ist, zu erkennen.

Fortran: DX (DELTA-X) Dimension: cm Name(A): dx_i: vgl. Abschnitt 5.8

Fortran: X

Dimension: cm

Name(A): -: Abstand vom Zwischengitterpunkt 1 der jeweiligen Gitterpunkte, wird als Summe aller dx mit kleinerem oder gleich großem Index ermittelt.

Fortran: ND Dimension: cm⁻³ Name(A): N_D: Donatorkonzentration am jeweiligen Hauptgitterpunkt

Fortran: NA Dimension: cm⁻³ Name(A): N_A: Akzeptorkonzentration am jeweiligen Hauptgitterpunkt

Fortran: RZ Dimension:cm⁻³ Name(A): N_R: Konzentration der Rekombinationszentren am jeweiligen Hauptgitterpunkt

Ausgabe von Kontrollwerten der berechneten Massenwirkungskonstanten: Die Massenwirkungskonstanten gehen als Randwerte in die, für die Berechnung der dynamischen Störstellenbesetzung nötigen, Differenzialgleichungen ein. Zu Kontrollzwecken werden jeweils Maximum, Minimum und der Ortshauptgitterpunkt, an dem diese Werte angenommen wurden, ausgegeben.

Fortran: KDC Dimension: cm⁻³ Name(A): K_{DC}: Massenwirkungskonstante für Donatoren oder für das Donatorniveau der Rekombinationszentren

Fortran: KDV Dimension:cm⁻³ Name(A): K_{DV}: Massenwirkungskonstante für Donatoren oder für das Donatorniveau der Rekombinationszentren

Fortran: KAC Dimension: cm⁻³ Name(A): K_{AC}: Massenwirkungskonstante für Akzeptoren oder für das Akzeptorniveau der Rekombinationszentren

Fortran: KAV Dimension: cm⁻³ Name(A): K_{AV}: Massenwirkungskonstante für Akzeptoren oder für das Akzeptorniveau der Rekombinationszentren

Fortran: NI Dimension: cm⁻³ Name(A): n_i: effektive Eigenleitungsdichte

Fortran: NI**2 Dimension: cm⁻⁶ Name(A): n₁²: Quadrat der effektiven Eigenleitungsdichte

Fortran: EC - EV Dimension: V Name(A): E_c - E_v : effektiver Bandabstand zwischen Leitungs- und Valenzband

Vor der Ausgabe der nachfolgenden lokalen Daten erfolgt die Ausgabe der globalen Daten, wie sie für die Bildschirmausgabe schon beschrieben wurde. Siehe auch Abschnitt 6 und 6.1

Fortran: P Dimension: cm⁻³ Name(A): p: Löcherkonzentration

Fortran: NDP Dimension: cm^{-3} Name(A): N_D^+ : Konzentration der positiv geladenen Donatoren

Fortran: NAN Dimension:cm⁻³ Name(A): N_A⁻: Konzentration der negativ geladenen Akzeptoren

Fortran: NRZP (nur wenn RZ .GT. 0) Dimension: cm^{-3} Name(A): N_R⁺: Konzentration der positiv geladenen Rekombinationszentren

Fortran: NRZN (nur wenn RZ .GT .0) Dimension: cm⁻³ Name(A): N_R⁻: Konzentration der negativ geladenen Rekombinationszentren

Fortran: NPTN (nur wenn PTKONZ .GT. 0) Dimension: cm⁻³ Name(A): N_{Pt}⁻: Konzentration der negativ geladenen Platinzentren

Fortran: NPTP (nur wenn PTKONZ .GT. 0) Dimension: cm⁻³ Name(A): N_{Pt}*: Konzentration der positiv geladenen Platinzentren

Fortran: NKZP (nur wenn HE1 oder HE2 .GT. 0) Dimension: cm^{-3} Name(A): N_{KZ}⁺: Konzentration der positiv geladenen K-zentren

Fortran: NAZN (nur wenn HE1 oder HE2 .GT. 0) Dimension: cm⁻³ Name(A): N_{AZ}: Konzentration der negativ geladenen A-zentren

Fortran: NVZN (nur wenn HE1 oder HE2 .GT. 0) Dimension: cm⁻³ Name(A): N_{VZ}⁻: Konzentration der negativ geladenen VV-zentren

Fortran: JN Dimension: A/cm² Name(A): jn: Elektronenstromdichte

Fortran: JP Dimension: A/cm² Name(A): j_p: Löcherstromdichte

Fortran: EFELD Dimension: V/cm Name(A): E: elektrische Feldstärke Fortran: AEJ Dimension: W/cm³ Name(A): Q: Verlustleistungsdichte

Fortran: TEMPLI Dimension: K Name(A): -: Temperatur im linken Randmetall

Fortran: TEMP Dimension: K Name(A): T: Temperatur

Fortran: TEMPRE Dimension: K Name(A): -: Temperatur im rechten Randmetall

Fortran: REKN Dimension: cm⁻³/s Name(A): -: Rekombinationsanteile der Kontinuitätsgleichung (A.2.2) für Elektronen $(-\Sigma R_n + G_l - R_A)$

Fortran: REKP Dimension: cm⁻³/s Name(A): -: Rekombinationsanteile der Kontinuitätsgleichung (A.2.1) für Löcher $(-\Sigma R_p + G_I - R_A)$

Fortran: TAUN Dimension: 10^{-6*}s Name(A): -: Lebensdauer der Elektronen

Fortran: TAUP Dimension: 10^{-6*}s Name(A): -: Lebensdauer der Löcher

Fortran: MUN Dimension: cm²/(V*s) Name(A): µn: Beweglichkeit der Elektronen

Fortran: MUP Dimension: cm²/(V*s) Name(A): μ_p: Beweglichkeit der Löcher

Fortran: EC - EFN Dimension: V Name(A): E_c - E_{Fn} : Abstand zwischen Leitungsbandkante und Quasi-Fermi-Niveau der Elektronen

Fortran: EFP - EV Dimension: V Name(A): E_{Fp} - E_V: Abstand zwischen Quasi-Fermi-Niveau der Löcher und Valenzbandkante

Nach diesen Listen erscheint folgender Übersicht mit Maximum- und Minimumwerten:
DMIN1 (IDI) (= IRR)	= Rückstromspitze
DMIN1 (IL)	= maximaler Strom durch L
DMAX1 (EFELD, EFELD0)	= maximale Feldstärke
DMAX1 (UDIO)	= maximale Diodenspannung
DMAX1 (PDIO)	= maximale Diodenverlustleistung
DMAX1 (TEMP - TEMP0)	= maximale Temperaturdifferenz zum Anfangswert
DMIN1 (DT)	= DTMINO = minimale Zeitschrittweite DT
DMAX1 (DT)	= DTMAXO = maximale Zeitschrittweite DT

Bei dynamischen Simulationen erscheint jetzt folgender 2DPLOT:

2DPLOT VON IDI(=I), IL(=L), UDIO(=U) UND UC(=C)

Die maximalen und minimalen Werte der Achsen werden angegeben. Die Dehnung der Achsen wird im Programm automatisch an den jeweiligen Daten angepasst.

Am Ende des Schnelldruckerprotokols erscheint folgende Übersicht:

ZAHL DER ZEITPUNKTE IM T-PLOT:	PTZ
ZAHL DER X-BILDER:	PXZ
ZAHL DER X-PUNKTE IM X-PLOT:	NMAX

Verbrauchte CPU-Zeit

7. Die Ausgabe von lokalen Daten am Bildschirm:

Falls DIALOG=T und ZKURZ=F werden zur Ausgabe am Bildschirm 5 Ausgabepunkte ausgewählt. In ADIOS werden diese Ausgabepunkte mit OUT1, OUT2, OUT3, OUT4 und OUT5 bezeichnet. An diesen werden Werte von Zustandsgrößen, die für Haupt- oder Zwischengitterpunkte definiert sind, für den jeweiligen Gitterpunkt ausgegeben. Die Ausgabepunkte werden anhand der Hauptgitterpunkte wie folgt ermittelt:

- (a) Ausgabepunkt: OUT1: ausgegeben werden: N(1), P(1), EFELD(2), JN(1), JP(1) und TEMP(1)
- (b) Ausgabepunkt: OUT5: ausgegeben werden: N(NMAX), P(NMAX), EFELD(NMAX), JN(NMAX+1), JP(NMAX+1) und TEMP(NMAX)
- (c) Folgende Bedingungen gelten für OUT2 bis OUT4 bei IDI .LE. 0D0: bei OUT2 gilt: X(OUT2+1) .GT. MAX(DP1,DP2) bei OUT3 gilt: X(OUT3+1) .GT. X(NMAX+1)*.5D0 bei OUT4 gilt: X(NMAX+1)-X(OUT4-1) .GT. MAX(DN1,DN2) Diese Zuweisung wird nach der Berechnung des thermischen Gleichgewichtes durchgeführt.
 (d) Folgende Bedingungen gelten für OUT2 bis OUT4 bei IDL CT. 0D0:
- (d) Folgende Bedingungen gelten für OUT2 bis OUT4 bei IDI .GT. 0D0: bei OUT2 gilt: Maximum von N im Intervall [1, OUT2] (P+-Emitter) bei OUT3 gilt: Minimum von N+P im Mittelgebiet bei OUT4 gilt: Maximum von P im Intervall [OUT3, NMAX] (N+-Emitter) Diese Zuweisung wird nach der Zuweisung (c) durchgeführt, wenn IDI .GT. 0D0
- (e) in der Dynamik werden die unter (a) bis (c) berechneten und unter (d) eventuell geänderten Ausgabepunkten weiterverwendet.

7.1. Dialogbetrieb:

Beim Dialogbetrieb (DIALOG=T, Abschnitt 5.51) erscheint, außer wenn TFIN=0 und SIMTYP=0,1,2,4 oder 5 oder wenn das Ende des Rechenlaufes erreicht wurde, die Abfrage:

Deutsch:

Eingabe: +(+++)/*(***) = naechster Schritt oder S/s = STOP oder EINGABE = Weiter

Englisch: enter: +(+++)/*(***) = next step(s) or S/s = STOP or ENTER = resume

Die Eingabe kann folgender Form haben:

- 2. s Stop. Es erscheint eine Abbruchmeldung und die verbrauchte CPU-Zeit in Sek.
- 3. ****..*s n Ausgabeschritten weiter rechnen und danach Stop. n = Zahl der Sternchen. 1 .LE. n .LE. 199

Bei falscher Eingabe erscheint die Meldung:

Deutsch: === Falsche Antwort ===

Eingabe: +(+++)/*(***) = naechster Schritt oder S/s = STOP oder EINGABE = Weiter

Englisch: === wrong answer === enter: +(+++)/*(***) = next step(s) or S/s = STOP or ENTER = resume

Bei fünffacher Eingabefehler hintereinander erfolgt Programmabbruch. Die Eingabe der Returntaste alleine, wird wie Eingabe der maximalen Zahl der Sternchen gewertet. <u>Die ESC-Taste:</u> Durch Betätigung der ESC-Taste (nur wenn DIALOG=T) kann ein Rechenlauf sofort abgebrochen werden. Eine Restart-Datei wird erzeugt.

8. Die Formate der Ausgabedatensätze:

Im FORTRAN-Programm sind Variablen, die mit Y anfangen, reduzierte Größen, die vor der Ausgabe umgerechnet werden.

8.1. DATPT.DAT

In DATPT.DAT werden die Zeitpunkte YT (ausgegeben als YT*DIMT) und die Zeitverläufe IDI, PDIO, UDIO, IL, UC, XX, IG und UG als REAL*8 Werte abgespeichert. XX wird mit dem Parameter AUSTYP in ADIOS ausgewählt. Siehe hierzu Abschnitt 5.53.

Unterstehende Fortran-Anweisungen zeigen das Ausgabeformat. In der ersten Zeile stehen die Zahl der Ausgabepunkte PTZ und die Textstrings für die über Parameter AUSTYP angewählte Plotterausgabe. DATPT ist die Kanalnummer des Ausgabefiles.

Fortran-Anweisungen:

CHARACTER*15 TX15 CHARACTER*40 TX40 INTEGER PTZ,DATPT

WRITE(DATPT,REC=1)PTZ,TX40,TX15 WRITE(DATPT,REC=PTZ+1)(YT-YTANF),IDI,PDIO,UDIO,IL,UC,XX,IG,UG

8.2. DATPX.DAT:

In DATPX.DAT werden die Zeitpunkte YT (als YT*DIMT ausgegeben), die X-Werte und die Zeitverläufe von wichtigen Halbleitergrößen als 3DPLOTs abgespeichert.

Unterstehende Fortran-Anweisungen zeigen das Ausgabeformat.

In der ersten Zeile steht die Zahl der Ausgabepunkte PXZ (Zeitgitter), die Zahl der Hauptgitterpunkte in X-Richtung (NMAX), die Diskretisierung der Randmetalle DXMETL und DXMETR und die Anfangstemperatur TEMP0.

In der zweiten Zeile stehen die x-Koordinaten: Hauptgitterpunkte.

In der dritten Zeile stehen die x-Koordinaten: Zwischengitterpunkte.

In der vierten Zeile steht das Dotierungsprofil.

In der fünften Zeile steht das Profil der Summe der Rekombinationszentren.

In der sechsten Zeile stehen die Elektronenkonzentrationen bei i=0.

In der siebten Zeile stehen die Löcherkonzentrationen bei i=0.

Hiernach folgt für jeden Zeitpunkt einen Ausgabeblock, (siehe nachfolgende Fortrananweisungen), der wie folgt aufgebaut ist:

Erste Zeile

Nachfolgende Zeilen REKN, REKP, (YNRZN+YNPTN+YNAZN+YNVZN), (YNRZP+YNPTP+YNKZP), NAN, NDP, N, P, TEMP, AEJ, TEMPLI, TEMPRE, EFN (= Ec - EFn) und EFP (= Efp - Ev) bezogen auf das jeweilige Hauptgitter.

Nachfolgende Zeilen EFELD, JN, JP, JDI, MUN und MUP bezogen auf das Zwischengitter.

DATPX ist die Kanalnummer der Ausgabedatei.

7eit

DIMN und H118 sind Normierungsgrößen. TEMP0 ist die Anfangstemperatur.

Die Ausgabe erfolgt von Hauptgitterpunkt 1 bis einschließlich Hauptgitterpunkt NMAX bzw. von Zwischengitterpunkt 1 bis einschließlich Zwischengitterpunkt NMAX+1. Die Ausgabe erfolgt jeweils einmal pro Zeitgitterpunkt. ZX ist die fortlaufende Zeilennummer.

Fortran-Anweisungen:

INTEGER PXZ, DATPX, L, NMAX, ZX

! BESTIMMUNG UND AUSGABE VON PXZ UND AUSGABE VON NMAX, DXMETL

! DXMETR UND TEMPO

ZX=PXZ*21 PXZ=PXZ+1 WRITE (DATPX, REC=1) PXZ, NMAX, DXMETL, DXMETR, TEMPO ! X-WERTE IF (PXZ .EQ. 1) THEN WRITE (DATPX, REC=2) (X(L), L=1, NMAX) WRITE (DATPX, REC=3) (INTER(L), L=1, NM1) ! DOTIERUNG WRITE (DATPX, REC=4) (((YND(L)-YNA(L))*DIMN), L=1, NMAX) WRITE (DATPX, REC=5) (((YRZ(L)+YPTKON+YEHE(L))*DIMN), L=1, NMAX) ! NULLWERTE ZUR TAU-BERECHNUNG WRITE (DATPX, REC=6) ((\$N0(L) * DIMN), L=1, NMAX) WRITE (DATPX, REC=7) ((\$P0(L) *DIMN), L=1, NMAX) END IF ! ERSTER PUNKT, ZEITANGABE, ANFANG AUSGABEBLOCK PRO ZEITPUNKT WRITE (DATPX, REC=ZX+8) \$T*DIMT ! AUSGABE VON REKN, REKP, (NRZN+NPTN+NAZN+NVZN), (NRZP+NPTP+NKZP), ! NPTN, NPTP, NAZN, NVZN, NKZP, NAN, NDP, N, P, TEMP, AEJ, TEMPLI, ! TEMPRE, EFN UND EFP WRITE (DATPX, REC=ZX+9) ((\$REKN(L)*H118), L=1, NMAX) WRITE (DATPX, REC=ZX+10) ((\$REKP(L)*H118), L=1, NMAX) WRITE (DATPX, REC=ZX+11) (((YNRZN(L)+YNPTN(L)+YNAZN(L)+YNVZN(L))*DIMN), L=1,NMAX) WRITE (DATPX, REC=ZX+12) (((YNRZP(L)+YNPTP(L)+YNKZP(L))*DIMN), L=1, NMAX) WRITE (DATPX, REC=ZX+13) ((\$NAN(L) *DIMN), L=1, NMAX) WRITE (DATPX, REC=ZX+14) ((\$NDP(L) *DIMN), L=1, NMAX) WRITE (DATPX, REC=ZX+15) ((\$N(L) *DIMN), L=1, NMAX) WRITE (DATPX, REC=ZX+16) ((\$P(L) * DIMN), L=1, NMAX) WRITE (DATPX, REC=ZX+17) ((TEMP(L)-TEMP0), L=1, NMAX) WRITE (DATPX, REC=ZX+18) (AEJ(L), L=1, NMAX) WRITE (DATPX, REC=ZX+19) ((TEMPLI(L)-TEMP0), L=1, NMAX) WRITE (DATPX, REC=ZX+20) ((TEMPRE(L)-TEMP0), L=1, NMAX) WRITE (DATPX, REC=ZX+21) (EFN(L), L=1, NMAX) WRITE (DATPX, REC=ZX+22) (EFP(L), L=1, NMAX) ! AUSGABE VON EFELD, JN, JP, JDI, MUN UND MUP AN DEN ZWISCHENGITTER-! PUNKTEN WRITE (DATPX, REC=ZX+23) (EFELD(L), L=1, NM1) WRITE (DATPX, REC=ZX+24) (JN(L), L=1, NM1) WRITE (DATPX, REC=ZX+25) (JP(L), L=1, NM1) WRITE (DATPX, REC=ZX+26) (JDI(L), L=1, NM1) WRITE (DATPX, REC=ZX+27) (MUN(L), L=1, NM1) WRITE (DATPX, REC=ZX+28) (MUP(L), L=1, NM1)

9. Tabellen mit Parameter für die Wärmeleitung:

Quellen:

[1] = A. GOLDSMITH, E. WATERMAN, H. J. HIRSCHHORN HANDBOOK OF THERMOPHYSICAL PROPERTIES OF SOLID MATERIALS REVISED EDITION, VOLUME 1: ELEMENTS; THE MACMILLAN COMPANY, NEW YORK, 1961

[2] = PROPERTIES OF SILICON

INSPEC, The Institution of Electrical Engineers; London and New York EMIS Datareviews Series No. 4, 1988

Werte mit ? sind extrapolierte Werte.

ALUMINIUM

CHROM

RHO-M = 2.71 g/cm³ bei T=300 K [1] RHO-M = 7.16 g/cm³ bei T=300 K [1]

RHO-M = 8.94 g/cm³ bei T=300 K [1]

KUPFER

Temp	С	Lambda	-		L L . L .	T		1
K	J/g/K	W/cm/K	<u>Temp</u>	<u> </u>		<u>remp</u>	<u> </u>	Lambda
	Ũ		K	J/g/K	W/cm/K	K	J/g/K	W/cm/K
0	0.000	0.000				_		
10	0.017	65.78	0	0.000	0.000	0	0.000	0.000
30	0.033	31.16	20	0.017	5.712	20	0.025	51.93 ?
40	0.084	13.85	40	0.042	4.674	40	0.059	19.04
50	0 146	8 655	50	0.054	3.462	50	0.109	12.12
60	0.140	6 02/	60	0.075	2.423	60	0.146	8.309
100	0.230	0.924	80	0.146	1.471	80	0.209	5.193
100	0.502	2.073	100	0.230	1.212	100	0.259	5.020
150	0.690	2.010	150	0.331	1.056	150	0.318	4.483
200	0.803	2.389	200	0.381	0.987	200	0.356	4,293
250	0.866	2.301	250	0 423	0.935	250	0 377	4 154
300	0.908	2.250	300	0.456	0 900	300	0 385	4 051
350	0.941	2.198	350	0.400	0.883	350	0.000	3 981
400	0.975	2.146	400	0.475	0.000	400	0.000	3 012
450	0.992	2.112	400	0.400	0.000	400	0.397	3.912
500	1.025	2.060	400	0.490	0.040	450	0.402	3.043
600	1.067	1.973	500	0.510	0.831	500	0.400	3.791
700	1.121	1.904	600	0.527	0.796	600	0.418	3.704
800	1.172	1.852	700	0.540	0.744	700	0.431	3.618
900	1.222	1.852	800	0.552	0.692	800	0.444	3.549
1000	1 276 ?	1 852 ?	900	0.569	0.658	900	0.456	3.462
			1000	0.598	0.623	1000	0.469	3.393

GERMANIUM

EISEN

RHO-M = 7.874 g/cm³ bei T=300 K [1] RHO-M = 8.90 g/cm³ bei T=300 K [1]

NICKEL

1000

PLATIN

Temp	С	Lambda	Τ		Laushala	Τ	_	l a sa la al a
κ	J/g/K	W/cm/K	<u>Temp</u>	<u> </u>	Lambda	<u>Temp</u>	C	
	-		K	J/g/K	VV/cm/K	ĸ	J/g/K	W/cm/K
0	0.000	0.000	0	0.000	0.000	0	0.000	0.000
10	0.008	12.46	0	0.000	0.000	0	0.000	0.000
40	0.067	7.963	20	0.004	9.001	30	0.017	2.510
50	0.084	5.885	40	0.033	5.193	50	0.050	2.077
60	0 109	4 847	50	0.063	3.808	60	0.075	1.766
80	0 159	3 116	60	0.092	2.770	80	0.151	1.385
100	0.100	2 16/	80	0.151	1.731	100	0.218	1.212
150	0.201	2.104	100	0.209	1.385	150	0.335	1.004
200	0.233	0.024	150	0.335	1.039	200	0.385	0.848
200	0.209	0.031	200	0.385	0.866	250	0.418	0.727
250	0.318 ?	0.675	250	0.418	0.779	300	0.444	0.658
300	0.326 ?	0.589	300	0 448	0 727	350	0 464	0.606
350	0.335 ?	0.519	350	0.460	0.692	400	0.481	0.571
400	0.339 ?	0.450	400	0.400	0.675	400	0.401	0.571
450	0.343 ?	0.398 ?	460	0.404	0.075	4 50	0.500	0.507
500	0.345 ?	0.364 ?	430	0.405	0.040	500	0.551	0.302
600	0.347 ?	0.294 ?	500	0.500	0.000	550	0.000	0.485
700	0.348 ?	0.242 ?	600	0.556	0.537	600	0.615	0.467
800	0.349 ?	0.173 ?	700	0.611	0.485	650	0.561	0.467
900	0.350?	0.138 ?	800	0.678	0.433	700	0.536	0.467
1000	0.351 ?	0 104 ?	900	0.774	0.364	800	0.519	0.502
1000	0.001	0.1011	1000	1.004	0.312	900	0.527	0.519

GOLD

RHO-M = 19.3 g/cm³ bei T=300 K [1]

MOLYBDAEN

RHO-M = 10.24 g/cm³ bei T=300 K [1]

RHO-M = 21.5 g/cm³ bei T=300 K [1]

0.554

0.544

Temp	С	Lambda	-		1
K	J/a/K	W/cm/K	Temp	С	Lambda
	0		K	J/g/K	W/cm/K
0 10 30 40 50 60 80 100 150 200 250 300 350 400 450 500 1000	0.000 0.008 0.046 0.067 0.079 0.088 0.100 0.109 0.126 0.128 0.129 0.130? 0.131? 0.132? 0.133? 0.134?	0.000 28.56 7.790 5.193 3.635 3.549 3.479 3.479 3.479 3.479 3.479 ? 3.479 ? 3.479 ? 3.479 ? 3.479 ? 3.479 ? 3.479 ? 3.479 ? 3.479 ?	0 30 50 60 80 100 150 200 250 300 350 400 450 500 600 700 800 900 1000	0.000 0.126 ? 0.167 ? 0.209 ? 0.230 ? 0.243 0.251 0.255 0.259 0.264 0.268 0.268 0.268 0.268 0.272 0.272 0.272 0.276 0.280 0.285	0.000 3.722 3.202 2.683 2.077 1.731 1.471 1.419 1.385 1.367 1.350 1.333 1.316 1.298 1.281 1.246 1.212 1.177 1.142

Temp	С	Lambda
K	J/g/K	W/cm/K
0	0.000	0.000
10	0.042 ?	13.329
30	0.063 ?	2.943
40	0.075 ?	1.731
50	0.084 ?	1.212
60	0.092 ?	1.039
80	0.109 ?	0.796
100	0.113 ?	0.762
150	0.121 ?	0.727
200	0.126 ?	0.718
250	0.130	0.713
300	0.132	0.710
350	0.134	0.708
400	0.135	0.706
450	0.136	0.705
500	0.138	0.703
600	0.140	0.698
700	0.143	0.692
800	0.146	0.687
900	0.149	0.684
1000	0.151	0.679

RHO-M = 5.32 g/cm³ bei T=300 K [1]

SILIZIUM

SILBER

RHO-M = 10.5 g/cm³ bei T=300 K [1] RHO-M = 19.3 g/cm³ bei T=300 K [1]

Temp	С	Lambda
K	J/g/K	W/cm/K
0	0.000	0.000
2	-	0.44
4	-	3.11
5	0.000034	-
6	-	8.99
8	-	16.4
10	0.000276	24.0
20	0.00341	47.7
30	-	44.2
40	0.0441	36.6
50	-	28.0
60	0.115	-
80	0.188	-
100	0.259	9.13
120	0.328	-
140	0.395	-
150	-	4.10
160	0.456	-
180	0.511	-
200	0.557	2.66
220	0.597	-
240	0.632	-
260	0.665	-
280	0.691	-
300	0.713	1.56
400	0.785	1.05
500	0.832	0.80
600	0.849	0.64
700	0.866	0.52
800	0.883	0.43
900	0.899	0.36
1000	0.916	0.31

RHO-M = 2.329 g/cm³ bei T=300 K [2]

<u>Temp</u> K	c J/g/K	<u>Lambda</u> W/cm/K
K 0 10 40 50 60 80 100 150 200 250 300 350 400 450 500 600 700 800 900 1000	J/g/K 0.000 0.042 ? 0.126 ? 0.146 ? 0.167 ? 0.201 ? 0.201 ? 0.218 ? 0.226 ? 0.232 ? 0.234 0.236 0.238 0.241 0.243 0.241 0.243 0.247 0.255 0.259 0.264 0.268 ?	W/cm/K 0.000 43.28 ? 9.521 5.366 4.674 4.310 4.276 4.258 4.241 4.224 4.206 4.189 4.120 4.051 3.981 3.808 3.635 3.462 3.289 ? 3.116 ?

WOLFRAM

Temp	с	Lambda
ĸ	J/g/K	W/cm/K
0	0.000	0.000
20	0.042 ?	13.848
40	0.084 ?	6.232
50	0.105 ?	4.154
60	0.109?	3.462
80	0.117 ?	2.770
100	0.126	2.250
150	0.128	1.904
200	0.130	1.731
250	0.132	1.627
300	0.134	1.558
350	0.136?	1.523
400	0.138 ?	1.489
450	0.140 ?	1.437
500	0.142 ?	1.402
600	0.146 ?	1.367
700	0.151 ?	1.316
800	0.155 ?	1.281
900	0.159 ?	1.246
1000	0.163?	1.212

TITAN

RHO-M = 4.60 g/cm**3 bei T=300 K [1]

<u>Temp</u>	С	<u>Lambda</u>
K	J/g/K	W/cm/K
0	0.000	0.000
50	0.126	0.364
100	0.314	0.346
150	0.418	0.284
200	0.460	0.242
250	0.498	0.232
300	0.523	0.216
350	0.544	0.208
400	0.565	0.201
450	0.577	0.194
500	0.586	0.190
600	0.607	0.183
700	0.619	0.178
800	0.636	0.173
900	0.649	0.171
1000	0.669	0.168 ?

10. Bedeutung von TYP in UP-SUBSTP

- TYP = 0: Abnormales Programmende durch Abbruch oder Rechnerausfall UP-SUBSTP wurde nicht aufgerufen. RESTART erlaubt, wenn eine Restartdatei erzeugt wurde.
- TYP = 1: Normales Programmende, RESTART erlaubt wenn YT .GT. 0D0
- TYP = 2: Programm-Ende durch Terminaleingabe von S=Stop oder bei Eingabefehler in UP-SUBPSE. RESTART erlaubt wenn YT .GT. 0D0.
- TYP = 3: Eingabefehler in UP-INPUT, RESTART nicht möglich.
- TYP = 4: Iteration konvergiert nicht oder Determinant ist null oder Division durch null in UP-ANF, UP-GLMAT1, UP-GLMAT2, UP-NULLW, UP-SPLINE, UP-SWST, UP-TDYN oder UP-UPDATE. RESTART nicht möglich.
- TYP = 5: Eingabefehler in UP-REA, RESTART nicht möglich.
- TYP = 6: Fehler mit Programm-Ende in UP-SWST bzw. bei Betätigung der Esc-Taste, RESTART erlaubt.
- TYP = 7: Eingabefehler in HP-ADIOS, UP-PROFIL bzw. UP-RTR, RESTART nicht möglich.
- TYP = 8: Fehler beim Öffnen von DATPT.DAT, RESTART nicht möglich.
- TYP = 9: Fehler beim Öffnen von DATPX.DAT, RESTART nicht möglich.
- TYP = 10: Fehler beim Öffnen von DATRST.DAT, RESTART nicht möglich.
- TYP = 11: Fehler beim Öffnen oder schließen von ADIOS-INPUT.DAT. RESTART nicht möglich.
- TYP = 12: Schreibfehler in UP-PXOUT. RESTART erlaubt, wenn eine Restartdatei erzeugt wurde.
- TYP = 13: Schreibfehler in UP-PTOUT. RESTART erlaubt, wenn eine Restartdatei erzeugt wurde.
- TYP = 14: Schreibfehler in UP-SCHR. RESTART erlaubt, wenn eine Restartdatei erzeugt wurde und WRFLAG richtig in Zeile 1 der Restartdatei steht.
- TYP = 15: Eingabefehler in UP-DATLES, RESTART nicht möglich.
- UP = Unterprogramm, HP = Hauptprogramm

* *										
* *										
* *	A	A	DDD	D	IIII	OC	000	SS	SSS	
* *	AA	AA	DD	DDD	IIII	00	00	SS	SS	
* *	AA	AA	DD	DD	II	00	00	SS		
* *	AA	AA	DD	DD	II	00	00	SS		
* *	AA	AA	DD	DD	II	00	00	SS	SSS	
* *	AA	AA	DD	DD	II	00	00		SS	
* *	AAAA	AAAA	DD	DD	II	00	00		SS	
* *	AA	AA	DD	DD	II	00	00	SS	SS	
* *	AA	AA	DD	DDD	IIII	00	00	SS	SSS	
* *	AA	AA	DDD	D	IIII	OC	000	S	S	
* *										
* *										

11. Anhang A: Das mathematische Halbleitermodell, Stand: 01.12.2012

11.A.1 Einleitung zum Halbleitermodell

Es wird das mathematische Modell für das dynamische und stationäre Verhalten eines Halbleiters vorgestellt. Grundlage dieses Modells sind die angegebenen Literaturstellen, deren Ergebnisse hier übernommen wurden. Tiefer gehende Information über die Halbleiterphysik ist diesen Literaturstellen zu entnehmen. Einen allgemeinen Überblick über die Halbleiterphysik geben unter anderem E. Spenke /1/ und J.S. Blakemore /2/. Einen guten Überblick über die Halbleitersimulation gibt S. Selberherr /3/.

Für das mathematische Halbleitermodell werden folgende Annahmen gemacht:

- 1. Das Basismaterial ist ideal. Es treten keine Kristallfehler und keine Inhomogenitäten auf. J. Cornu und R. Sittig /4/ untersuchten den Einfluss von Inhomogenitäten in einer dreidimensionalen Analyse. Sie zeigen, dass Inhomogenitäten teilweise durch das umliegende Material kompensiert werden.
- 2. Der Halbleiter kann in einem eindimensionalen Modell dargestellt werden und wird als Siliziumscheibe aufgebaut. Am Rande treten folgende Effekte auf, die vernachlässigt werden:
 - die Oberflächenrekombination
 - das elektrische Feld wird durch die Oberflächenladung beeinflusst,
 - die effektive Breite des Mittelgebietes vergrößert sich (Bild A.1.1).
 - Diese effektive Vergrößerung des Mittelgebietes ist vernachlässigbar, wenn der Durchmesser der Siliziumscheibe sehr viel größer ist als 2d.

Die Oberflächenrekombination an den Metallkontakten wird nicht vernachlässigt.

Bild A.1.1: Durchschnitt einer Diode, prinzipieller Aufbau

3. Kein Magnetfeldeinfluss.

- 4. Keine elektromagnetische Strahlung.
- 5. Kein Rauschen.
- 6. Die Rekombination über Exzitonenniveaus wird vernachlässigt.
- 7. Die Rekombination über Donator-Akzeptor-Paare wird vernachlässigt. Keine Übergänge zwischen Rekombinationszentren.
- 8. Es treten keine Foto-Effekte auf. Die Rekombination mit direktem Übergang von Band zu Band wird vernachlässigt.
- 9. Der Tunneleffekt wird ausgeschlossen. Er tritt nur auf, wenn die benachbarten p- und n-Schichten in der Diode beide sehr hoch dotiert sind.
- 10. Der Einfluss des Anpressdruckes auf den Bandabstand ist vernachlässigbar.
- 11. Die relative dielektrische Konstante ε_r ist konstant.

S. Dhar und A.H. Marshak geben in /5/ an, dass ε_r unter Dotierungskonzentrationen von 2.10¹⁷ cm⁻³ konstant ist. Ein starker Anstieg tritt bei Dotierungskonzentrationen über 10¹⁸ cm⁻³ auf. Dieser Anstieg ist von der Art der Dotierung abhängig.

In /5/ wird folgende Gleichung für ε angegeben:

$$\varepsilon = \varepsilon_0 \left\{ \varepsilon_r + \frac{N_{st} \alpha (\varepsilon_r + 2) (4\varepsilon_r - 1)}{9\varepsilon_r - N_{st} \alpha (\varepsilon_r + 2)} \right\}$$
(A.1.1)

mit:

$$\alpha = \frac{A}{1 - BN_{st}^{1/3}} \tag{A.1.2}$$

Für Silizium gilt: ϵ_r = 11,7. N_{St} ist die Störstellenkonzentration. Tabelle A.1.1 gibt die Werte für A und B in (A.1.2) an.

	<u>A</u>	B
	ст ³	ст
As	0,571 10 ⁻²⁰	4,827 10 ⁻⁷
Ρ	1,907 10 ⁻²⁰	4,698 10 ⁻⁷
Sb	2,430 10 ⁻²⁰	5,050 10 ⁻⁷

Tabelle A.1.1: A- und B-Werte der Gleichung (A.1.2) für verschiedene Dotierungen.

Die Gleichungen (A.1.1) und (A.1.2) wurden versuchsweise programmiert. Hierbei wurden die Phosphor-Werte aus der Tabelle A.1.1 eingesetzt. Der Einfluss auf Dioden hat sich dabei sowohl stationär als dynamisch als vernachlässigbar herausgestellt.

12. Der Energietransport über heiße Ladungsträger ist vernachlässigbar. R.K. Cook /6/ beschreibt ein Modell zur eindimensionalen Simulation von npn-bipolar-Transistoren. In diesem Modell wird der Energietransport über heiße Ladungsträger berücksichtigt. R.K. Cook vergleicht seine Ergebnisse mit Simulationen, die die üblichen Modelle ohne heißen Ladungsträger beinhalten. Die Berücksichtigung der heißen Ladungsträger hat gegenüber der konventionellen Theorie keinen großen Einfluss auf die Spannungen und Ströme des Transistors hervorgerufen. Dieser Einfluss steigt aber bei kleiner werdenden Strukturen, wie sie in der Mikroelektronik üblich sind.

In den nachfolgenden Abschnitten werden die Gleichungen für das mathematische Halbleitermodell aufgestellt. Hierbei wird der Temperatureinfluss berücksichtigt. Als Erstes nach den Basisgleichungen werden

die Fermistatistik, die Besetzungswahrscheinlichkeit von Donatoren und Akzeptoren und die Massenwirkungsgesetze erläutert. Diese Theorie wird bei der anschließenden Beschreibung der Rekombination über Rekombinationszentren benötigt.

Für diese Rekombination wird ein dynamisches Modell verwendet anstatt der üblichen stationären Gleichung. Vorteil dieses Rekombinationsmodelles ist, dass hiermit auch das Verhalten der Akzeptor- und Donator-Dotierung beschrieben werden kann. Die Besetzungswahrscheinlichkeit der Akzeptoren und Donatoren ist hiermit im stationären und dynamischen Fall berechenbar. Die in der Literatur häufig gemachte Annahme der vollständigen Ionisation der Dotierungen wird hier also nicht gemacht. Weiter werden die Augerrekombination, die Oberflächen-Rekombination und die Stoßionisation beschrieben. Gefolgt wird mit einem Modell der Beweglichkeiten von Löchern und Elektronen als Funktion der Ladungsträgerkonzentrationen, Dotierungen, Temperatur und elektrischen Feldstärke. Die Gleichungen für das Dotierungsprofil werden angegeben.

Abgeschlossen wird mit den Wärmeleitungsgleichungen zur Temperaturberechnung, mit der Beschreibung einer Diodenbeschaltung (R, C und Stufenkern) und als allerletztes mit vier Programmtechnischen Abschnitten.

11. A.2 Die Basisgleichungen

Als Grundlage des Modells dienen unterstehende Gleichungen (A.2.1) bis (A.2.6):

1. die Kontinuitätsgleichung für Löcher $\left(\frac{\delta}{\delta x} = \operatorname{div}\right)$:

$$\frac{\delta p}{\delta t} = -\frac{1}{e} \cdot \frac{\delta j_p}{\delta x} - \sum R_p + G_l - R_A$$
(A.2.1)

2. die Kontinuitätsgleichung für Elektronen $\left(\frac{\delta}{\delta x} = \operatorname{div}\right)$:

$$\frac{\delta n}{\delta t} = +\frac{1}{e} \cdot \frac{\delta j_n}{\delta x} - \sum R_n + G_l - R_A \tag{A.2.2}$$

3. die Poisson-Gleichung $\left(\frac{\delta}{\delta x} = \operatorname{div}\right)$:

$$\frac{d}{dx}\varepsilon_{0}\varepsilon_{r}E=e\left(p-n+N_{D}^{*}-N_{A}^{*}+N_{R}^{*}-N_{R}^{*}\right)$$
(A.2.3)

Diese Gleichung wird nur für die Anfangsbedingungen benötigt.

4. die Gleichung für die Löcherstromdichte, bestehend aus Feld- und Diffusionsstromdichten $\left(\frac{\delta}{\delta x} = \text{grad}\right)$:

$$j_{p} = e\mu_{p}\rho E - kT\mu_{p}\frac{\delta p}{\delta x} - \frac{1}{2}k\mu_{p}\rho\frac{\delta T}{\delta x} - e\mu_{p}\rho T\frac{d}{dx}\left(\frac{\Delta E_{v}}{T}\right)$$

$$= e\mu_{p}\rho E - eD_{p}\frac{\delta p}{\delta x} - \frac{1}{2}eD_{p}\frac{p}{T}\frac{\delta T}{\delta x} - e\mu_{p}\rho T\frac{d}{dx}\left(\frac{\Delta E_{v}}{T}\right)$$
(A.2.4)

5. die Gleichung für die Elektronenstromdichte, bestehend aus Feld- und Diffusionsstromdichten:

$$j_{n} = e\mu_{n}nE + kT\mu_{n}\frac{\delta n}{\delta x} + \frac{1}{2}k\mu_{n}n\frac{\delta T}{\delta x} + e\mu_{n}nT\frac{d}{dx}\left(\frac{\Delta E_{c}}{T}\right)$$

$$= e\mu_{n}nE + eD_{n}\frac{\delta n}{\delta x} + \frac{1}{2}eD_{n}\frac{n}{T}\frac{\delta T}{\delta x} + e\mu_{n}nT\frac{d}{dx}\left(\frac{\Delta E_{c}}{T}\right)$$
(A.2.5)

In (A.2.4) und (A.2.5) werden Ladungsträger- und Temperaturgradienten und der Gradient des Bandgapnarrowing nach Abschnitt A.4 berücksichtigt.

6. die Gleichung für die gesamte Stromdichte j:

$$j = j_{\rho} + j_{n} + \varepsilon_{0} \varepsilon_{r} \frac{\delta E}{\delta t}$$
(A.2.6)

Diese Gleichung bestimmt im dynamischen Fall die Größe der elektrischen Feldstärke E.

In (A.2.4) und (A.2.5) wurde die Nernst-Townsend-Einsteinsche Beziehung verwendet. Sie gilt nur für nichtentartete Halbleiter (siehe hierzu Abschnitt A.3) und lautet:

$$D_{\rho} = \mu_{\rho} \frac{kT}{e} \tag{A.2.7}$$

bzw.

$$D_{n} = \mu_{n} \frac{kT}{e}$$

$$L_{n} = \sqrt{\frac{kT}{e}} \mu_{n} \tau_{n} = \sqrt{D_{n} \tau_{n}} \qquad \frac{D_{n}}{L_{n}} = \sqrt{\frac{D_{n}}{\tau_{n}}} = \sqrt{\frac{kT}{e}} \frac{\mu_{n}}{\mu_{n}} \qquad \frac{D_{p}}{L_{p}} = \sqrt{\frac{D_{p}}{\tau_{p}}} = \sqrt{\frac{kT}{e}} \frac{\mu_{p}}{\tau_{p}}$$

$$J_{0} = \left[\frac{eD_{n}n_{p0}}{L_{p}} + \frac{eD_{p}p_{n0}}{L_{n}}\right] \qquad \text{Min. Therm. Gleichgewicht:}$$

$$J_{0} = \left[\frac{eD_{n}n_{p0}}{L_{p}} + \frac{eD_{p}p_{n0}}{L_{n}}\right] \qquad \text{Min. Therm. Gleichgewicht:}$$

Die Beweglichkeit ist eine Funktion mehrerer Parameter. Sie wird in Abschnitt A.13 und A.14 beschrieben.

Bei der Generation von Ladungsträgern wird, außer der SRH-Generation, nur die Stoßionisation berücksichtigt (Abschnitt A.12).

Bei der Rekombination und bei der Poisson-Gleichung werden Akzeptoren und Donatoren mit einem Energieniveau im verbotenen Band und Rekombinationszentren mit zwei Energieniveaus betrachtet (Abschnitt A.7 und A.8). Außerdem wird die Augerrekombination berücksichtigt (Abschnitt A.10).

11.A.3 Die Fermistatistik

Die Fermistatistik beschreibt den Zusammenhang zwischen Ladungsträgerkonzentration und Ferminiveau. Dieser Zusammenhang wird in Abschnitt A.6 benötigt bei der Beschreibung des Massenwirkungsgesetzes. Das Massenwirkungsgesetz wiederum wird bei der Beschreibung der Rekombination benötigt. Die Fermistatistik wird ausführlich durch E. Spenke /1/ und durch J.S. Blakemore /2/ behandelt.

Folgende Annahmen in diesem Abschnitt werden gemacht:

1. Keine Entartung. Die Entartung kann vernachlässigt werden, wenn für die Elektronenkonzentration n bzw. Löcherkonzentration p gilt:

 $n < N_c /3$ und $p < N_v /3$

Hierin ist: N_c = effektive Zustandsdichte im Leitungsband N_v = effektive Zustandsdichte im Valenzband.

Wird die Ladungsträgerkonzentration ausgehend vom Ferminiveau errechnet, dann ist der Fehler bei den oben angegebenen Grenzen kleiner als 10%. Die Werte für N_c und N_v sind:

 $\begin{array}{ll} N_{c}(300 \text{ K}) = 3,219 \ 10^{19} \text{ cm}^{-3} & N_{c}(400 \text{ K}) = 5,211 \ 10^{19} \text{ cm}^{-3} \\ N_{v}(300 \text{ K}) = 3,095 \ 10^{19} \text{ cm}^{-3} & N_{v}(400 \text{ K}) = 5,270 \ 10^{19} \text{ cm}^{-3} \end{array}$

Die Gleichungen für diese Größen werden nachfolgend in diesem Abschnitt angegeben.

- 2. Keine Verengung des Bandabstandes. Bei hohen Dotierungskonzentrationen tritt eine Verengung des Bandabstandes auf. Außerdem sind die Leitungsbandkante E_c und die Valenzbandkante E_V nicht mehr scharf definiert, sondern fließend. Die Verengung des Bandabstandes wird in Abschnitt A.4 behandelt.
- 3. Kein Einfluss der Dotierungskonzentration auf die effektiven Zustandsdichten N_c und N_v bzw. auf die effektiven Massen m_c und m_v.

Dieser Einfluss wird durch A.H. Marshak und K.M. van Vliet /7/ und durch H.D. Barber /8/ beschrieben. A.H. Marshak gibt an, dass dieser Einfluss bei Dotierungskonzentrationen unter 10¹⁹ cm⁻³ vernachlässigt werden darf. Der Zusammenhang zwischen effektiver Zustandsdichte und effektiver Masse wird durch (A.3.2) bzw. (A.3.4) angegeben.

Unter Berücksichtigung der oben stehenden Annahmen gilt nach E. Spenke /1/ für die Zusammenhänge zwischen Ladungsträgerkonzentration und Ferminiveau:

$$\frac{n}{N_c} = \exp\left[\left(E_{Fn} - E_c\right)\frac{e}{kT}\right]$$

$$N_c = 2\left[\frac{2\pi m_c kT}{h^2}\right]^{3/2}$$

$$(A.3.2)$$

$$P = \exp\left[\left(E_{Fn} - E_{c}\right)\frac{e}{kT}\right]$$

$$(A.3.2)$$

$$\frac{1}{N_v} = \exp\left[\left(\frac{E_v - E_{Fp}}{kT}\right]$$
(A.3.3)
$$N_v = 2\left[\frac{2\pi m_v kT}{h^2}\right]^{3/2}$$
(A.3.4)

exp[...] in (A.3.1) und (A.3.3) ist die Vereinfachung von: $\frac{2}{\sqrt{\pi}}F_{1/2}$

wobei
$$F_{1/2} = \int_{0}^{\infty} \frac{\sqrt{y}}{1 + \exp(y - x)} dy$$

$$f(\varepsilon) = \frac{1}{1 + \exp\left[(\varepsilon - \varphi) \cdot \frac{e}{kT}\right]} \Rightarrow n_0 = \int_{E_c}^{\infty} f(\varepsilon) g(\varepsilon) d\varepsilon = N_c F_{1/2}(\eta) \frac{2}{\sqrt{\pi}}$$

Fermi-Wahrscheinlichkeitsverteilung: $g(\varepsilon)$ = Zustandsdichteverteilung per Energieeinheit

Im thermischen Gleichgewicht gilt für das Ferminiveau EF

 $f(\varepsilon)$ $f(\varepsilon)$ f^*g ε

 $E_F = E_{Fn} = E_{Fp}$

Bemerkung: Oft werden (A.3.1) und (A.3.3) nach x differenziert und dann in (A.2.5) bzw. (A.2.4) eingesetzt, um einfache Ausdrücke für die Elektronen- und Löcher-Stromdichten zu bekommen. Diese Vorgehensweise ist nur dann vorteilhaft, wenn T ortsunabhängig ist:

$$j_n = -e\mu_n p \frac{dE_{Fn}}{dx}, \quad j_p = e\mu_p p \frac{dE_{Fp}}{dx}$$

Für die effektiven Massen werden die reduzierten Größen mc^{*} und mv^{*} eingeführt.

$$m_{c}^{*} = m_{c} / m_{0}$$
(A.3.6)
$$m_{v}^{*} = m_{v} / m_{0}$$
(A.3.7)

Die m_c^* -Werte nach H.D. Barber /8/ können im Temperaturbereich $100 \le T \le 500$ K durch folgende Näherungsgleichung wiedergegeben werden:

$$m_{c}^{*} = 1,04+5,2\cdot10^{-4}\cdot\frac{T}{K}-1,7\cdot10^{-7}\cdot\left(\frac{T}{K}\right)^{2}$$
 (A.3.8)

H.D. Barber hat m_v^* mithilfe einer vereinfachten Band-Struktur gerechnet.

F.L. Madarasz, J.E. Lang und P.M. Hemeger /9/ berücksichtigen die nicht parabolische Bandstruktur im Silizium. Die m_v^* -Werte in /9/ können im Temperaturbereich $20 \le T \le 600$ K durch folgende Näherungsgleichung wiedergegeben werden:

$$m_{V}^{*}=0,3532+6\cdot10^{-2}\cdot\frac{T}{K}-8,08\cdot10^{-4}\cdot\left(\frac{T}{K}\right)^{2}$$
 (A.3.9)

Diese m_v^{*}-Werte sind bei 300 und 400 K um ca. 40% größer als die von Barber angegebenen Werte.

Für m_{c}^{*} und m_{v}^{*} folgt aus (A.3.8) und (A.3.9):

 $\begin{array}{ll} m_{C}{}^{*}\left(300\;K\right) = 1,181 & m_{C}{}^{*}\left(400\;K\right) = 1,221 \\ m_{V}{}^{*}\left(300\;K\right) = 1,150 & m_{V}{}^{*}\left(400\;K\right) = 1,230 \end{array}$

Die Multiplikation von (A.3.1) mit (A.3.3) liefert:

$$pn = N_c N_v \exp\left[\left(-E_c + E_v + E_{Fn} - E_{Fp}\right)\frac{e}{kT}\right]$$
(A.3.10)

Hierbei gilt für den Bandabstand E_g:

$$\mathsf{E}_{\mathsf{g}} = \mathsf{E}_{\mathsf{C}} - \mathsf{E}_{\mathsf{V}} \tag{A.3.11}$$

Im thermischen Gleichgewicht folgt mit (A.3.5) und (A.3.11) aus (A.3.10):

$$pn = N_c N_v \exp(-E_g \frac{e}{kT}) = n_i^2$$
(A.3.12)

Hierin ist die Eigenleistungsdichte ni vom Ferminiveau unabhängig. Die Gleichung (A.3.12) kann wieder in (A.3.10) eingesetzt werden:

$$pn = n_i^2 \exp\left[\left(E_{Fn} - E_{Fp}\right)\frac{e}{kT}\right]$$
(A.3.13)

Der Bandabstand E_g ist temperaturabhängig. H.D. Barber /8/ hat die Werte für E_g von Macfarlane u.a. /10/ übernommen. Mit einem Fehler, kleiner als 1,6 mV, gilt im Temperaturbereich $0 \le T \le 415$ K nach /11/:

$$\frac{E_g}{V} = 1,1631 - \frac{7,2 \cdot 10^{-4} (T/K)^2}{T/K + 1166}$$

Für E_g folgt somit:

 $E_{q}(300 \text{ K}) = 1,119 \text{ V}$ $E_{q}(400 \text{ K}) = 1,090 \text{ V}$

Mit diesen Werten für E_g folgt aus (A.3.12) für die Eigenleitungsdichte:

 $n_i (300 \text{ K}) = 1,26 \ 10^{10} \text{ cm}^{-3}$ $n_i (400 \text{ K}) = 7,17 \ 10^{12} \text{ cm}^{-3}$

11.A.4 Die Verengung des Bandabstandes

Bei hohen Dotierungskonzentrationen tritt eine Erhöhung der effektiven Eigenleitungsdichte auf. In vielen Literaturstellen wird dies als Folge einer Verengung des Bandabstandes interpretiert. Die Interpretation wird in dieser Arbeit weiterverwendet.

J.W. Slotboom und H.C. de Graaff geben in /11/ eine Formel für die Verengung des Bandabstandes ΔE_g als Funktion der Akzeptorkonzentration an. ΔE_g ist hierbei unabhängig von der Temperatur. Die Angaben in /11/ beruhen auf Messungen in der Basis von npn-Transistoren. Die Formel für ΔE_g aus /11/ wird sehr häufig in der Literatur angewendet.

Neuere Werte für ΔE_g wurden durch J.A. Del Alamo und R.M. Swanson /12/ veröffentlicht. Ihre Angaben beruhen nur auf Literaturstudien von Messungen. Die Gleichungen für ΔEg aus /11/ und /12/ werden am Ende dieses Abschnittes angegeben. Dort werden auch die Konsequenzen für das mathematische Modell in dieser Arbeit erläutert.

Mit ΔE_g kann eine effektive Eigenleitungsdichte n_{ie} berechnet werden. Die Gleichung lautet:

$$E_{Ce} - E_{Ve} = E_C - E_V - \Delta E_g = E_g - \Delta E_g$$

 $n_{ie}^2 = n_i^2 \exp\left(\Delta E_a \frac{e}{kT}\right)$

Die effektiven Bandkanten werden dann benützt, um sowohl die Eigenleitungsdichte als auch die Massenwirkungskonstanten und die Verlustleistungsdichte zu bestimmen. G.L. Pearson und J. Bardeen /13/ beschreiben nämlich, dass die Abstände zwischen Donatorniveau und Leitungsbandkante bzw. Akzeptorniveau und Valenzbandkante nur bei geringen Dotierungskonzentrationen eindeutige Niveaus besitzen. Bei steigender Dotierungskonzentration werden diese Niveaus aufgespalten. Dieser Effekt kann durch die Einführung von effektiven Bandkanten berücksichtigt werden.

(A.4.1)

(A.4.2)

 ΔE_{g} kann jetzt in zwei Komponenten aufgeteilt werden:

$$\begin{array}{cccc} \Delta E_g = \Delta E_c + \Delta E_V & (A.4.3) & E_C & \Delta E_C \\ \text{wobei} & & & & \\ \Delta E_c = E_c - E_{Ce} & (A.4.4) & & & \\ \text{und} & & & & \\ \Delta E_V = E_{Ve} - E_V & (A.4.5) & & & \\ \end{array}$$

Definition von ΔE_c und ΔE_V

Aus folgenden Angaben in /13/ können bei konstanten Störstellenniveaus folgende Gleichungen für ΔE_c und ΔE_v abgeleitet werden:

$$\Delta E_{c} = 4,3 \cdot 10^{-8} \cdot \sqrt[3]{\frac{N_{A}}{cm^{-3}}} V$$
(A.4.6)
$$\Delta E_{v} = 7,7 \cdot 10^{-8} \cdot \sqrt[3]{\frac{N_{D}}{cm^{-3}}} V$$
(A.4.7)

Im Gegensatz hierzu ist es möglich, ausgehend von den ΔE_g -Angaben in /11/, ΔE_c und ΔE_v wie folgt zu definieren:

$$\Delta E_{\rm C} = \Delta E_{\rm V} = \Delta E_{\rm g}/2 \tag{A.4.8}$$

mit

$$\Delta E_{g} = 9 \cdot 10^{-3} \left\{ \ln \left(\frac{N_{A} + N_{D}}{10^{17} \ cm^{-3}} \right) + \sqrt{\left[\ln \left(\frac{N_{A} + N_{D}}{10^{17} \ cm^{-3}} \right) \right]^{2} + \frac{1}{2} \right\}} V$$
(A.4.9)

Diese Vorgehensweise wurde in Simulationsprogrammen wie OSSI und MEDUSA /14/ der RWTH Aachen gewählt.

Genauso willkürlich wie die Vorgehensweise in /14/ ist es, ΔE_g -Werte je nach Dotierart entweder dem Leitungsband oder dem Valenzband zuzuordnen, obwohl diese Vorgehensweise im Einklang mit der Veröffentlichung von G.L. Pearson und J. Bardeen /13/ steht. In diesem Fall würde mit der ΔE_g -Gleichung aus /12/ folgen:

$$\Delta E_{c} = 2,46 \cdot 10^{-6} \cdot \left(\frac{N_{D}}{cm^{-3}}\right)^{0,234}$$
(A.4.10)
$$\Delta E_{v} = 2,46 \cdot 10^{-6} \cdot \left(\frac{N_{A}}{cm^{-3}}\right)^{0,234}$$
(A.4.11)

Es wurden die Modelle (A.4.8) - (A.4.9) und (A.4.10) - (A.4.11) programmiert, um die unterschiedlichen Auswirkungen beider Modelle untersuchen zu können. Auch kann die Verengung des Bandabstandes vollständig im Modell ausgeschaltet werden. Bild A.4.1 zeigt ΔE_g als Funktion der Dotierung für die Modelle von Slotboom und de Graaff /11/ und von Del Alamo u.a. /12/. Das Modell von Del Alamo u.a. gibt bei höheren Dotierungen höhere Werte für ΔE_g . Hierdurch werden die berechneten Emitterwirkungsgrade sinken. Die Folge hiervon sind niedrigere Ladungsträgerkonzentrationen beim Vorwärtsbetrieb von z. B. Dioden. Hieraus resultieren eine höhere Durchlassspannung und ein verbessertes Abschaltverhalten bei Dioden. Umgekehrt hat das Ausschalten des ΔE_g -Modells eine niedrigere Vorwärtsspannung und ein schlechteres Abschaltverhalten zur Folge. In dieser Arbeit wurde, wenn nichts anderes angegeben wird, mit dem Modell von Del Alamo gerechnet.

<u>Bild A.4.1</u>: Die Verengung des Bandabstandes ∆E_g als Funktion der Dotierung. Die Modelle stammen von J.W. Slotboom und H.C. de Graaff /11/ und von J.A. Del Alamo und R.M. Swanson /12/. rot = Gleichung (A.4.9), blau = Gleichung (A.4.10)

In allen nachfolgenden Gleichungen mit E_c bzw. E_v können diese Größen durch $E_{ce} = E_c - \Delta E_c$ bzw. $E_{ve} = E_v + \Delta E_v$ ersetzt werden.

11.A.5 Die Besetzungswahrscheinlichkeit von Donator- und Akzeptor-Niveaus im thermischen Gleichgewicht

E. Spenke /1/ und J.S. Blakemore /2/ berichten hierüber ausführlich. In einer Diode werden Akzeptoren im p⁺-Gebiet und Donatoren im n⁻ und n⁺-Gebiet eingebaut. Die Besetzungswahrscheinlichkeit ist vom Ferminiveau abhängig. Die nachfolgenden Gleichungen werden in Abschnitt A.6 bei der Beschreibung der Massenwirkungsgesetze benötigt.

Folgende Annahmen werden gemacht:

1. Nur einfach ionisierende Störstellen. Für die Donatoren D gilt folgende Reaktionsgleichung mit einem Elektron ⊖:

$D^{\scriptscriptstyle 0} \Leftrightarrow D^{\scriptscriptstyle +} + \varTheta$	(A.5.1)
und für die Akzeptoren A mit einem Loch \oplus :	
$A^{0} \Leftrightarrow A^{-} + \oplus$	(A.5.2)
Die Indizes geben den Zustand der Störstelle an:	
⁰ neutral, ⁺ = einfach positiv geladen und ⁻ einfach negativ geladen.	

2. Konstante Spinentartungsfaktoren. Die Spinentartungsfaktoren treten auf, weil die Zahl der Besetzungsmöglichkeiten und die Zahl der besetzbaren Plätze unterschiedlich sind. Ein positiv geladener Donator kann nur ein Elektron aufnehmen. Nach J.S. Blakemore /2/ bietet die Störstelle aber vor der Anlagerung eines Elektrons mehrere Besetzungsmöglichkeiten. Das Elektron hat zwei Spinrichtungen. Der Grundzustand des Donators ist in zwei Zustände aufgespaltet, und es treten mehrere angeregte Zustände auf. Die hierdurch auftretenden Spinentartungsfaktoren sind eine Funktion des Ferminiveaus. Hier wird aber mit konstanten Spinentartungsfaktoren gerechnet, um das mathematische Modell nicht zu überlasten.

Für die Donatoren mit Konzentration N_D und für die Akzeptoren mit Konzentration N_A gelten folgende Kontinuitätsgleichungen:

$$N_{\rm D} = N^{+}_{\ \rm D} + N^{0}_{\ \rm D} \tag{A.5.3}$$

$$N_A = N_A^- + N_A^0$$
(A.5.4)

Das Verhältnis der ionisierten Störstellenkonzentration zur tatsächlichen Störstellenkonzentration ist vom Ferminiveau abhängig. E. Spenke /1/ gibt an:

$$\frac{N_D^*}{N_D} = \frac{1}{1 + 2 \cdot \exp\left[\left(E_F - E_D\right)\frac{e}{kT}\right]}$$
(A.5.5)

$$\frac{N_{A}}{N_{A}} = \frac{1}{1 + 2 \cdot \exp\left[\left(E_{A} - E_{F}\right)\frac{e}{kT}\right]}$$
(A.5.6)

Die Faktoren 2 sind Spinentartungsfaktoren.

Position von E_F

Die Spinentartungsfaktoren werden durch die effektiven Spinentartungsfaktoren B_D (für Donatoren) und B_A (für Akzeptoren) ersetzt. Es folgt:

$$\frac{N_D^*}{N_D} = \frac{1}{1 + \beta_D \exp\left[\left(E_F - E_D\right)\frac{\mathbf{e}}{kT}\right]}$$
(A.5.7)
$$\frac{N_A^*}{N_A} = \frac{1}{1 + \beta_A \exp\left[\left(E_A - E_F\right)\frac{\mathbf{e}}{kT}\right]}$$
(A.5.8)

Die Spinentartungsfaktoren können rein mathematisch als Temperaturkoeffizienten von E_F-E_D bzw. E_A-E_F betrachtet werden.

Der Temperaturkoeffizient von E_F-E_D wird dann: $\frac{k}{e} \ln(\beta_D)$ und der Temperaturkoeffizient von E_A-E_F wird: $\frac{k}{e} \ln(\beta_A)$. Mit $\beta_D = 2$ folgt: $\frac{k}{e} \ln(2) = 0,06 \ mV/K$.

11.A.6 Die Massenwirkungsgesetze

Mit den Massenwirkungsgesetzen werden die Konzentrationen der ionisierten Störstellen im thermischen Gleichgewicht berechnet.

Störstellen sind: Donatoren, Akzeptoren und Rekombinationszentren.

Grundlage der Massenwirkungsgesetze ist die Reaktionsgleichung von Donatoren und Akzeptoren mit Elektronen bzw. Löchern:

$D^{\scriptscriptstyle 0} \Leftrightarrow D^{\scriptscriptstyle +} + \varTheta$	(A.6.1)
$A^{\scriptscriptstyle 0} \Leftrightarrow A^{\scriptscriptstyle -} + \oplus$	(A.6.2)
$D^{\scriptscriptstyle +} \Leftrightarrow D^{\scriptscriptstyle 0} + \oplus$	(A.6.3)
$A^{-} \Leftrightarrow A^{0} + \Theta$	(A.6.4)

In den Massenwirkungsgesetzen treten Massenwirkungskonstanten auf. Für die Ableitung dieser Massenwirkungskonstanten werden folgende Annahmen gemacht:

- 1. Die Elektronen und Löcher beeinflussen sich gegenseitig nicht.
- Die Störstellen beeinflussen sich gegenseitig nicht. Die Zahl der Siliziumatome pro cm³ ist: 5,02 10²² cm³. Eine Dotierungskonzentration von 10¹⁹ cm⁻³ entspricht einer Verunreinigung von nur 0,02%. Eine exakte Konzentrationsgrenze für die Annahmen 1 und 2 ist unbekannt.
- 3. Die Übergänge in den Reaktionsgleichungen sind proportional zu den vorhandenen Konzentrationen.
- 4. Bei Berücksichtigung der Verengung des Bandabstandes können für die Energieniveaus der Leitungsbandkante und Valenzbandkante die effektiven Energieniveaus verwendet werden, wie im Abschnitt A.4 beschrieben wurde.

Bei den Reaktionsgleichungen (A.6.1) und (A.6.2) treten folgende Übergänge auf:

D⁰ → D⁺ + ⊖ proportional zu N⁰_D D⁰ ← D⁺ + ⊖ proportional zu N⁺_D .n A⁰ → A⁻ + ⊕ proportional zu N⁰_A A⁰ ← A⁻ + ⊕ proportional zu N⁻_A .p

Hieraus folgt, dass im thermischen Gleichgewicht gelten muss: Zahl der Übergänge nach links = Zahl der Übergänge nach rechts = konstant.

Es folgt somit:

$$\frac{N_D^* \cdot n}{N_D^0} = K_{DC} \tag{A.6.5}$$

$$\frac{N_A \cdot p}{N_A^0} = K_{AV} \tag{A.6.6}$$

Für N_{D}^{+}/N_{D} bzw. N_{A}^{-}/N_{A} gelten die Gleichungen (A.5.7) bzw. (A.5.8).

Aus (A.5.3) bzw. (A.5.4) folgt:

$$\frac{N_D^*}{N_D} = \frac{N_D^*}{N_D^* + N_D^0} = \frac{1}{1 + \frac{N_D^0}{N_D^*}}$$
(A.6.7)

$$\frac{N_{A}^{r}}{N_{A}} = \frac{N_{A}^{r}}{N_{A}^{r} + N_{A}^{0}} = \frac{1}{1 + \frac{N_{A}^{0}}{N_{A}^{r}}}$$
(A.6.8)

Aus (A.5.7) und (A.6.7) folgt:

$$\frac{N_D^+}{N_D^0} = \beta_D^{-1} \exp\left[\left(\boldsymbol{E}_D - \boldsymbol{E}_F\right)\frac{\boldsymbol{e}}{kT}\right]$$
(A.6.9)

Aus (A.5.8) und (A.6.8) folgt:

$$\frac{N_{A}^{-}}{N_{A}^{0}} = \beta_{A}^{-1} \exp\left[\left(\boldsymbol{E}_{F} - \boldsymbol{E}_{A}\right)\frac{\boldsymbol{e}}{kT}\right]$$
(A.6.10)

Für n bzw. p gelten die Gleichungen (A.3.1) bzw. (A.3.3) mit $E_{Fn} = E_{Fp} = E_F$

Werden (A.3.1) und (A.6.9) in (A.6.5) eingesetzt, dann folgt für die Massenwirkungskonstante K_{DC}

$$K_{DC} = \beta_D^{-1} \cdot N_C \cdot \exp\left[\left(E_D - E_C\right)\frac{e}{kT}\right]$$
(A.6.11)

und werden (A.3.3) und (A.6.10) in (A.6.6) eingesetzt, dann folgt für die Massenwirkungskonstante KAV:

$$K_{AV} = \beta_A^{-1} \cdot N_V \cdot \exp\left[\left(E_V - E_A\right) \frac{e}{kT}\right]$$
(A.6.12)

Die Massenwirkungskonstanten K_{DC} und K_{AV} sind vom Ferminiveau unabhängig.

Analog gilt für die Reaktionsgleichungen (A.6.3) und (A.6.4):

$$\frac{N_D^0 \cdot p}{N_D^+} = \mathcal{K}_{DV} \tag{A.6.13}$$

$$\frac{N_A^0 \cdot n}{N_A} = K_{AV} \tag{A.6.14}$$

Die Gleichungen (A.6.13) und (A.6.14) beruhen wieder auf der Annahme, dass die Übergänge in den Reaktionsgleichungen proportional zu den jeweiligen Konzentrationen sind.

Aus (A.6.9) bzw. (A.6.10) folgt:

$$\frac{N_D^0}{N_D^+} = \beta_D \exp\left[\left(E_F - E_D\right)\frac{e}{kT}\right]$$
(A.6.15)
$$\frac{N_A^0}{N_A^-} = \beta_A \exp\left[\left(E_A - E_F\right)\frac{e}{kT}\right]$$
(A.6.16)

Werden (A.3.3) und (A.6.15) in (A.6.13) eingesetzt, dann folgt mit $E_{Fp} = E_F$ für die Massenwirkungskonstante K_{DV} :

$$\boldsymbol{K}_{DV} = \boldsymbol{\beta}_{D} \cdot \boldsymbol{N}_{V} \cdot \exp\left[\left(\boldsymbol{E}_{V} - \boldsymbol{E}_{D}\right) \frac{\boldsymbol{e}}{kT}\right]$$
(A.6.17)

Werden (A.3.1) und (A.6.16) in (A.6.14) eingesetzt, dann folgt mit E_{Fn} = E_F für die Massenwirkungskonstante K_{AC}:

$$\kappa_{AC} = \beta_A \cdot N_C \cdot \exp\left[\left(E_A - E_C \right) \frac{e}{kT} \right]$$
(A.6.18)

K_{DV} und K_{AC} sind vom Ferminiveau unabhängig. K_{DC} multipliziert mit K_{DV} bzw. K_{AV} multipliziert mit K_{AC} liefern mit der Gleichung (A.3.12) die Eigenleitungsdichte:

 $K_{AC} K_{AV} = K_{DC} K_{DV} = n_i^2$ (A.6.19) Die Massenwirkungskonstanten sind also über die Eigenleitungsdichte miteinander verknüpft. Bei Berücksichtigung der Verengung des Bandabstandes sind die Massenwirkungskonstanten dagegen über die

effektive Eigenleitungsdichte n_{ie} miteinander verknüpft.

11.A.7 Die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band

In Abschnitt A.2 wurden die Kontinuitätsgleichungen (A.2.1) und (A.2.2) für die Löcher und Elektronen angegeben. Hierin kommen die Rekombinationsanteile R_p und R_n vor. Einer dieser Rekombinationsanteile ist die Rekombination über Rekombinationszentren mit einem Energieniveau im verbotenen Band. Normalerweise wird für diese Rekombination die Gleichung von W. Shockley - W.T. Read jr. /15/ und R.N. Hall /16/ verwendet:

$$R_{SRH} = \frac{pn - n_i^2}{\tau_p(n + n_1) + \tau_n(p + p_1)}$$
(A.7.1)

Diese Gleichung gilt nur für den stationären Fall. Schaltet die Diode um, dann kann sich die Besetzung der Rekombinationszentren ändern, und die Gleichung (A.7.1) darf nicht angewendet werden.

D.L. Scharfetter und H.K. Gummel /17/ geben an, dass τ_p und τ_n bei steigender Dotierungskonzentration kleiner werden können. Deshalb hat sich der Begriff der Scharfetter-Relation für die Ladungsträgerlebensdauerwerte in der SRH-Gleichung (A.7.1) eingebürgert. Sie lautet für τ_p bzw. τ_n :

Hierin ist N_{st} die jeweilige Störstellenkonzentration. γ und N_{Ref} variieren in der Literatur sehr stark. Diese Parameter sind aller Wahrscheinlichkeit nach Prozess-abhängig und können bei einer Simulation meistens nur als Fit-Parameter verwendet werden.

Ein dynamisches Rekombinationsmodell kann mit den Übergangsraten aus Bild A.7.1 aufgestellt werden. Die Übergangsraten in Bild A.7.1 gelten für ein Rekombinationszentrum mit einem Donatorniveau im verbotenen Band. Die Annahmen 1 bis 3 aus Abschnitt A.6 sind auch hier gültig. rn und rp sind Rekombinationskoeffizienten.

<u>Bild A.7.1:</u> Übergangsraten bei der Rekombination über ein Rekombinationszentrum mit einem Donatorniveau im verbotenen Band

Für die Rekombinationsanteile Rn und Rp folgt:

$$R_{p} = r_{p} \left(N_{D}^{0} \cdot p - N_{D}^{+} K_{DV} \right)$$
(A.7.4)

 $R_n = r_n \left(N_D^+ \cdot n - N_D^0 K_{DC} \right)$

(Statisch: N_{D}^{0} ($r_{p}p + r_{n}K_{DC}$) = N_{D}^{+} ($r_{p}K_{DV} + r_{n}n$); $N_{D}^{0} = N_{D} - N_{D}^{+}$)

R_p bzw. R_n sind positiv bei Rekombination und negativ bei der Generation von Ladungsträger. Im thermischen Gleichgewicht sind Rekombination und Generation miteinander im Gleichgewicht:

(A.7.5)

 $R_p = R_n = 0$. Um diese Bedingung zu erfüllen, wurden die Massenwirkungskonstanten K_{DV} und K_{DC} für das thermische Gleichgewicht abgeleitet.

Für das Rekombinationszentrum gilt weiter folgende Differenzialgleichung:

$$\frac{\delta N_D^+}{\delta t} = R_p - R_n = r_p \left(N_D^0 p - N_D^+ K_{DV} \right) - r_n \left(N_D^+ n - N_D^0 K_{DC} \right)$$
(A.7.6)

und die Kontinuitätsgleichung:

 $N_{D}^{+} + N_{D}^{0} = N_{D}$ (A.7.7)

Hieraus folgt:

$$\frac{\delta N_D^*}{\delta t} = -\frac{\delta N_D^0}{\delta t} \tag{A.7.8}$$

Die Gleichungen (A.7.6) und (A.7.7) zeigen, dass N⁺_D bei vorgegebenen Rekombinationskoeffizienten und Massenwirkungskonstanten nur von n und p abhängig ist.

Im stationären Fall folgt mit $\frac{\delta N_D^*}{\delta t} = 0$ aus (A.7.4) bis (A.7.8):

$$R_{p} = R_{n} = \frac{np - K_{DC} \cdot K_{DV}}{\frac{1}{r_{p} N_{D}} (n + K_{DC}) + \frac{1}{r_{n} N_{D}} (p + K_{DV})}$$
(A.7.9)

Mit $K_{DC} = n_1 K_{DV} = p_1 r_p N_D = \frac{1}{\tau_p}$, $r_n N_D = \frac{1}{\tau_n}$ und $K_{DC} \cdot K_{DV} = n_i^2$ folgt aus (A.7.7) dann die SRH-Gleichung (A.7.1). Weiter folgt im stationären Fall aus (A.7.4) bis (A.7.8) für die Besetzungswahrscheinlichkeit im stationären Fall:

$$\frac{N_{D}^{*}}{N_{D}} = \frac{1}{1 + \left[\frac{r_{n}n + r_{p}K_{DV}}{r_{p}p + r_{n}K_{DC}}\right]}$$
(A.7.10)

$$\begin{split} N^{+}_{D}/N_{D} &\approx 1 \; \text{wenn} \; p = 10^{14} \; \text{cm}^{-3} \qquad N^{+}_{D}/N_{D} &\approx 0 \; \text{wenn} \; p < 10^{10} \; \text{cm}^{-3} \\ \text{[wenn} \; N_{D} &= 11,5 \; 10^{13} \; \text{cm}^{-3} \; \text{und} \; N^{0}{}_{D} &= 5,72 \; 10^{13} \; \text{cm}^{-3} \; \text{dann folgt:} \\ N^{+}_{D} &= (11,5 - 5,72).10^{13} = 5,78 \; 10^{13} \; \text{cm}^{-3}] \end{split}$$

Das Energieniveau von Phosphor liegt sehr nahe am Leitungsband. Deshalb wird für Phosphor gelten: $K_{DC} \gg p$ und $K_{DV} \ll n$. Liegen r_n und r_p in der gleichen Größenordnung, dann folgt hiermit aus (A.7.10):

$$\frac{N_D^*}{N_D} = \frac{K_{DC}}{n + K_{DC}}$$
(A.7.11)

Rechenbeispiele:

$$n = p = 0 \rightarrow \frac{N_D^+}{N_D} = \frac{1}{1 + \frac{r_p K_{DV}}{r_n K_{DC}}} = \frac{1}{1 + \frac{r_p}{r_n} \frac{n_i^2}{K_{DC}^2}}$$
 weil: $K_{DV} K_{DC} = n_i^2$

mit $r_p K_{DV} \gg r_n K_{DC}$ folgt: $N^+_D/N_D \approx 0$

$$n=0 \rightarrow \frac{N_{D}^{+}}{N_{D}} = \frac{1}{1 + \frac{r_{p}K_{DV}}{r_{p}p + r_{n}K_{DC}}} = \frac{1}{1 + \frac{\alpha r_{n}K_{DC}}{r_{p}p + r_{n}K_{DC}}} = \frac{1}{1 + \frac{\alpha}{r_{p}}} = \frac{1 + p\frac{r_{p}}{r_{n}K_{DC}}}{1 + p\frac{r_{p}}{r_{n}K_{DC}}} = \frac{1 + p\frac{r_{p}}{r_{n}K_{DC}}}{\alpha + 1 + p\frac{r_{p}}{r_{n}K_{DC}}}$$

wobei: $r_{p}K_{DV} = \alpha r_{n}K_{DC}$

Diese Gleichung kann auch aus (A.6.5) und (A.7.7) für das thermische Gleichgewicht abgeleitet werden. Die Phosphor-ionisierung ist somit in erster Näherung vom Betriebszustand und von den

Rekombinationskoeffizienten unabhängig. Die Rekombinationskoeffizienten sind somit nur wichtig für die Rekombination nach (A.7.4), (A.7.5) bzw. (A.7.9). Hierbei zeigt (A.7.9) mit $n + K_{DC} \gg p + K_{DV}$, dass im wesentlichen nur r_p für die Rekombination von Bedeutung ist. In neutralem Zustand

folgt mit n = N_D^+ aus (A.7.11):

$$\frac{N_D^+}{N_D} = -\frac{1}{2} \frac{K_{DC}}{N_D} + \sqrt{\left[\frac{1}{2} \frac{K_{DC}}{N_D}\right]^2 + \frac{K_{DC}}{N_D}}$$
(A.7.12.)

Bild A.7.3 am Ende dieses Abschnittes zeigt den Verlauf dieser Funktion.

Bei niedriger Dotierung wird das Verhältnis K_{DC}/N_D groß sein, und der Phosphor ist 100% ionisiert. Bei Dotierungen in der Größenordnung 10¹⁸ bis 10¹⁹ cm⁻³ tritt eine Verringerung der Ionisierung auf, weil K_{DC}/N_D abnimmt. Bei hohen Dotierungen spaltet sich das Energieniveau des Donators in einem Band auf. Dieses Band kann sich mit der Leitungsbandkante überschneiden. Jedes Donatoratom wird jetzt ein frei bewegliches Elektron liefern. Die Donatoren sind wiederum 100 % ionisiert. W.R. Thurber beschreibt dies in /18/. Er weist daraufhin, dass nicht genug Messungen vorhanden sind, um die Teilionisierung und eine passende Theorie hierzu zu bestätigen. Sicher ist allerdings, dass 100 % Ionisierung bei hohen Konzentrationen auftritt. Im hier vorliegenden mathematischen Modell wird dieser Effekt durch eine Zunahme von K_{DC} bewirkt. Diese Zunahme von K_{DC} ist eine Folge der Abnahme von E_C - E_D um ΔE_C , wie sie in Abschnitt A.3 beschrieben wurde. Für den thermischen Gleichgewichtszustand wurde (A.7.11) und für den stationären Fall (A.7.10) programmiert.

Analog zum Donatorniveau kann die Rekombination auch für ein Akzeptorniveau abgeleitet werden (Bild A.7.2). r_n und r_p sind wiederum die Rekombinationskoeffizienten.

<u>Bild A.7.2:</u> Übergangsraten bei der Rekombination über ein Rekombinationszentrum mit einem Akzeptorniveau im verbotenen Band

Für die Rekombinationsanteile R_n und R_p folgt:

$$R_{p} = r_{p} (N_{A}^{-} . p - N_{A}^{0} K_{AV})$$
(A.7.13)

$$R_{n} = r_{n} (N_{A}^{0} . n - N_{A}^{-} K_{AC})$$
(A.7.14)

Weiter folgt für den Akzeptor:

$$\frac{\delta N_{A}^{o}}{\delta t} = R_{p} - R_{n} = r_{p} \left(N_{A}^{o} p - N_{A}^{o} K_{AV} \right) - r_{n} \left(N_{A}^{o} n - N_{A}^{o} K_{AC} \right)$$
(A.7.15)

mit der Kontinuitätsgleichung:

$$N_{A}^{0} + N_{A}^{2} = N_{A}$$
 (A.7.16)

Hieraus folgt:

^

$$\frac{\delta N_A^0}{\delta t} = -\frac{\delta N_A^2}{\delta t}$$
(A.7.17)

Die Gleichungen (A.7.15) und (A.7.16) zeigen, dass N⁻_A bei vorgegebenen Rekombinationskoeffizienten und Massenwirkungskonstanten wiederum nur von n und p abhängig ist.

Im stationären Fall folgt mit $\frac{\delta N_A^0}{\delta t} = 0$ aus (A.7.13) bis (A.7.16):

$$R_{p} = R_{n} = \frac{np - K_{AC} \cdot K_{AV}}{\frac{1}{r_{p} N_{A}} (n + K_{AC}) + \frac{1}{r_{n} N_{A}} (p + K_{AV})}$$
(A.7.18)

Diese Gleichung ist, wie auch (A.7.9) mit der SRH-Gleichung (A.7.1) identisch. Weiter gilt für die Besetzungswahrscheinlichkeit:

$$\frac{N_{A}}{N_{A}} = \frac{1}{1 + \left[\frac{r_{p}p + r_{n}K_{AC}}{r_{n}n + r_{p}K_{AV}}\right]}$$
(A.7.19)

Analog zum Donator liegt bei Bor, Aluminium und Gallium - als weitverbreitete Akzeptoren in Silizium - das Energieniveau des Akzeptors sehr nahe am Valenzband. Deshalb wird für diese Akzeptoren gelten: $K_{AV} \gg n$ und $K_{AC} \ll p$. Liegen r_n und r_p wiederum in der gleichen Größenordnung, dann folgt hiermit aus (A.7.19):

$$\frac{N_{A}}{N_{A}} = \frac{K_{AV}}{p + K_{AV}}$$
(A.7.20)

Diese Gleichung kann auch aus (A.6.6) und (A.7.16) für das thermische Gleichgewicht abgeleitet werden. Die Akzeptorionisierung ist somit in erster Näherung vom Betriebszustand und von den

Rekombinationskoeffizienten unabhängig. Die Rekombinationskoeffizienten sind somit, wie beim Phosphor, nur wichtig für die Rekombination nach (A.7.13), (A.7.14) bzw. (A.7.18). Hierbei zeigt (A.7.18) mit p + K_{AV} » n + K_{AC} , dass hier im wesentlichen r_n für die Rekombination von Bedeutung ist.

Zur Berechnung der Ionisierung der Akzeptoren im neutralen Silizium kann wie beim Phosphor verfahren werden. Daher ist Bild A.7.3 auch hier gültig. Die Bemerkungen über Phosphor, seinen

Massenwirkungskonstanten und die Ionisierung bei hoher Dotierung sind auch für die hier beschriebene Akzeptordotierungen gültig.

Für den thermischen Gleichgewichtszustand wurde (A.7.20) und für den stationären Fall (A.7.19) programmiert.

<u>Bild A.7.3:</u> Die Ionisierung der Donator- und Akzeptor-Atome als Funktion vom Verhältnis K_{DC}/N_D bzw. K_{AV}/N_A in neutralem Silizium.

11.A.8 Die Rekombination über Rekombinationszentren mit zwei Energieniveaus im verbotenen Band

In Abschnitt A.7 wurde die Rekombination über ein Rekombinationszentrum mit nur einem Energieniveau im verbotenen Energieband beschrieben. Oft wird Gold als Rekombinationszentrum verwendet. Gold hat aber zwei Energieniveaus im verbotenen Band, und zwar ein Akzeptor- und ein Donatorniveau.

Mit den Übergangsraten aus Bild A.8.1 wird wiederum ein dynamisches Rekombinationsmodell aufgestellt.

<u>Bild</u>A.8.1: Übergangsraten bei der Rekombination über ein Rekombinationszentrum mit einem Akzeptor- und einem Donatorniveau im verbotenen Band

Wie aus dem Bild A.8.1 hervorgeht, kann das Rekombinationszentrum drei Zustände annehmen: einfach negativ geladen, neutral oder einfach positiv geladen. Bei der Aufstellung der Übergangsraten in Bild A.8.1 wurden die Annahmen 1 bis 3 aus Abschnitt A.6 wiederum berücksichtigt. α_n , α_p , β_n und β_p sind Rekombinationskoeffizienten. Die Konzentration der Rekombinationszentren ist N_R. Für die Rekombinationsanteile R_n und R_p folgt:

$$\boldsymbol{R}_{\boldsymbol{\rho}} = \alpha_{\boldsymbol{\rho}} \left(\boldsymbol{N}_{\boldsymbol{R}}^{-} \boldsymbol{\rho} - \boldsymbol{N}_{\boldsymbol{R}}^{0} \boldsymbol{K}_{\boldsymbol{A}\boldsymbol{V}} \right) + \beta_{\boldsymbol{\rho}} \left(\boldsymbol{N}_{\boldsymbol{R}}^{0} \boldsymbol{\rho} - \boldsymbol{N}_{\boldsymbol{R}}^{*} \boldsymbol{K}_{\boldsymbol{D}\boldsymbol{V}} \right)$$
(A.8.1)

$$\boldsymbol{R}_{n} = \alpha_{n} \left(\boldsymbol{N}_{R}^{0} \boldsymbol{n} - \boldsymbol{N}_{R}^{-} \boldsymbol{K}_{AC} \right) + \beta_{n} \left(\boldsymbol{N}_{R}^{+} \boldsymbol{n} - \boldsymbol{N}_{R}^{0} \boldsymbol{K}_{DC} \right)$$
(A.8.2)

Zusätzlich gelten für die Rekombinationszentren folgende Differenzialgleichungen:

$$\frac{\delta N_R^*}{\delta t} = \beta_p \left(N_R^0 p - N_R^* K_{DV} \right) + \beta_n \left(N_R^0 K_{DC} - N_R^* n \right) \quad \text{(Donator)}$$
(A.8.3)

$$\frac{\delta N_R^2}{\delta t} = \alpha_p \left(N_R^0 K_{AV} - N_R^2 p \right) + \alpha_n \left(N_R^0 n - N_R^2 K_{AC} \right) \quad \text{(Akzeptor)}$$

$$\frac{\delta N_R^0}{\delta t} = -\frac{\delta N_R^+}{\delta t} - \frac{\delta N_R^-}{\delta t}$$
(A.8.5)

und folgende Kontinuitätsgleichung:

$$N_{R}^{-} + N_{R}^{0} + N_{R}^{+} = N_{R}$$
 (A.8.6)

(A.8.5) folgt durch Differenzieren unmittelbar aus (A.8.6).

Die Gleichungen (A.8.3) bis (A.8.6) zeigen, dass N_R^+ und N_R^- bei vorgegebenen Rekombinationskoeffizienten und Massenwirkungskonstanten nur von n und p abhängig sind.

Treten im Halbleiter mehrere Typen von Rekombinationszentren auf, dann können die jeweiligen Beiträge zu R_n bzw. R_p addiert werden. Hierbei wird die gegenseitige Beeinflussung nach Annahme 2, Abschnitt A.6 vernachlässigt. Zusätzlich muss pro Rekombinationszentrum und pro Rekombinationsniveau eine Differenzialgleichung am mathematischen Modell angefügt werden. Außerdem wird pro Rekombinationszentrum eine Kontinuitätsgleichung benötigt. Werden dagegen die Kontinuitätsgleichungen in den Differenzialgleichungen aufgenommen, dann folgt aus (A.7.6) und (A.7.7) für Rekombinationszentren mit einem Donatorniveau:

$$\frac{\delta N_D^+}{\delta t} = -\frac{\delta N_D^0}{\delta t} = r_p \left(N_D^0 p - N_D^+ \kappa_{DV} \right) - r_n \left(N_D^+ n - N_D^0 \kappa_{DC} \right)$$

$$= r_p \left[N_D p - N_D^+ \left(p + \kappa_{DV} \right) \right] - r_n \left[N_D^+ \left(n + \kappa_{DC} \right) - N_D \kappa_{DC} \right]$$
(A.8.7)

aus (A.7.15) und (A.7.16) für Rekombinationszentren mit einem Akzeptorniveau:

$$\frac{\delta N_{A}^{r}}{\delta t} = -\frac{\delta N_{A}^{0}}{\delta t} = r_{p} \left(N_{A}^{0} K_{AV} - N_{A}^{r} p \right) - r_{n} \left(N_{A}^{r} K_{AC} - N_{A}^{0} n \right)$$

$$= r_{p} \left[N_{A} K_{AV} - N_{A}^{r} \left(p + K_{AV} \right) \right] - r_{n} \left[N_{A}^{r} \left(n + K_{AC} \right) - N_{A} n \right]$$
(A.8.8)

und aus (A.8.3), (A.8.4) und (A.8.6) für Rekombinationszentren mit zwei Niveaus:

$$\frac{\delta N_R^+}{\delta t} = \beta_\rho \left[N_R \rho - N_R^- \rho - N_R^+ \left(\rho + K_{DV} \right) \right] + \beta_n \left[N_R K_{DC} - N_R^- K_{DC} - N_R^+ \left(n + K_{DC} \right) \right]$$
(A.8.9)

$$\frac{\delta N_R^{-}}{\delta t} = \alpha_p \Big[N_R K_{AV} - N_R^{+} K_{AV} - N_R^{-} (p + K_{AV}) \Big] + \alpha_n \Big[N_R n - N_R^{+} n - N_R^{-} (n + K_{AC}) \Big]$$
(A.8.10)

Die Berechnung der Ionisierung der Goldatome im thermischen Gleichgewicht erfolgt mit (A.8.6) und mit dem umgeformten Massenwirkungsgesetz (A.6.5) und (A.6.14), woraus folgt:

$$N_{R}^{*} n = N_{R}^{0} K_{DC}$$
(A.8.11)

$$N_{R}^{-} K_{AC} = N_{R}^{0} n \qquad (A.8.12)$$

Aus (A.8.6), (A.8.11) und (A.8.12) folgt:

$$N_{R}^{+} = N_{R} \frac{K_{AC} K_{DC}}{n^{2} + (n + K_{DC}) K_{AC}}$$
(A.8.13)

 $N_{R}^{+} = N_{R}$ wenn n « $(K_{DC}K_{AC})^{0.5}$; $(K_{DC}K_{AC})^{0.5}$ « n_{i}

$$N_{R}^{0} = N_{R} \frac{nK_{AC}}{n^{2} + (n + K_{DC})K_{AC}}$$
(A.8.14)

$$N_{R} = N_{R} \frac{n^{2}}{n^{2} + (n + K_{DC}) K_{AC}}$$
(A.8.15)

 $N_{R}^{-} = N_{R}$ wenn n » $\sqrt{K_{DC}K_{AC}}$

Die Ionisierung hängt von n ab. Bei hohen n-Konzentrationen werden viele Elektronen durch das Gold eingefangen, und es überwiegt somit das negativ geladene Gold. Bei niedrigen n-Konzentrationen ist das Verhalten genau umgekehrt. Jetzt überwiegen die Löcher (pn = n_i^2), und das positiv geladene Gold ist dominant.

Die Gleichungen (A.8.13) und (A.8.15) wurden für das thermische Gleichgewicht im Simulationsprogramm aufgenommen.

Für den stationären Fall muss von den Gleichungen (A.8.3) und (A.8.4) mit $\frac{\delta N_R^+}{\delta t} = \frac{\delta N_R^-}{\delta t} = 0$ und von (A.8.6) ausgegangen werden. Für N_{R}^{+} , N_{R}^{0} und N_{R}^{-} folgt daraus:

$$N_R^* = N_R \frac{B}{1 + B + A} \tag{A.8.16}$$

$$N_{R}^{0} = N_{R} \frac{1}{1 + B + A}$$
(A.8.17)

$$N_R = N_R \frac{A}{1 + B + A} \tag{A.8.18}$$

Hierin ist:

$$A = \frac{\alpha_n n + \alpha_p K_{AV}}{\alpha_p p + \alpha_n K_{AC}}$$
(A.8.19)

$$B = \frac{\beta_p \, \rho + \beta_n K_{DC}}{\beta_n \, n + \beta_p K_{DV}} \tag{A.8.20}$$

Im Gegensatz zum thermischen Gleichgewicht ist die Goldionisierung jetzt auch von den Rekombinationskoeffizienten abhängig. Aufgrund der geringen Größe der Massenwirkungskonstanten ist eine vereinfachte Betrachtung, wie bei den Donatoren und Akzeptoren, hier nicht möglich. Die Gleichungen (A.8.16) bis (A.8.20) wurden für den stationären Fall im Simulationsprogramm aufgenommen.

Ausgehend vom thermischen Gleichgewicht muss beachtet werden, dass Goldatome eine vorhandene n-Grunddotierung überkompensieren können. Aus einem n-Halbleiter entsteht dann ein p-Halbleiter. Mit Spreading-Resistance-Messungen ist dieses Verhalten feststellbar. W.R. Runyan /19/ gibt hier zu Kennlinien an, als Funktion von Temperatur, Grunddotierung und Goldkonzentration. Bei genauer Kompensation der Grunddotierung wird gelten: $p = n = n_i$. Im Falle einer n-Grunddotierung muss dann im thermischen Gleichgewicht und bei Neutralität im Halbleiter gelten:

$$N_{D}^{+} + N_{R}^{+} - N_{R}^{-} = 0$$
 (A.8.21)

Mit n = n_i in der Gleichung (A.7.11) folgt für den Donator: $N_{D}^{+} = N_{D}$. Einsetzen von (A.8.13) und (A.8.15) in (A.8.21) liefert die Grenzkonzentration für Gold, wofür eine exakte Kompensation der n-Grunddotierung auftritt:

$$N_{R} = N_{D} \frac{n_{i}^{2} + (n_{i} + K_{DC}) K_{AC}}{n_{i}^{2} - K_{AC} K_{DC}}$$
(A.8.22)

Bei Gold ist $K_{AC}K_{DC}$ wesentlich kleiner als n_i^2 . Hiermit vereinfacht sich (A.8.22) zu:

$$N_R = N_D \left(1 + \frac{K_{AC}}{n_i} \right) \tag{A.8.23}$$

Weil $K_{AC}K_{DC} \ll n_i^2$, ist die Überkompensation einer p-Grunddotierung durch Gold nicht möglich. Aus (A.8.23) kann gefolgert werden, dass mithilfe von Spreading-Resistance-Messungen Untersuchungen entweder von der Goldkonzentration oder von der Massenwirkungskonstante K_{AC} möglich sind.

)

Bei 300 K liegt die kritische Goldkonzentration dann bei 3,94 N_D und bei 400 K bei 2,71 N_D. Bild A.8.2 zeigt die netto Dotierung $|N_{D}^{+} + N_{R}^{+} - N_{R}^{-}|$ im thermischen Gleichgewicht als Funktion der Goldkonzentration. Die Donatordotierung ist konstant (5 10¹³ cm⁻³). Es herrscht Neutralität im Silizium.

Bild A.8.2: Die netto Dotierung |N⁺_D + N⁺_R - N⁻_R| als Funktion der Goldkonzentration. Thermisches Gleichgewicht. Konstante Donatordotierung. Parameter ist die Temperatur.

Weiter muss hier auf die Nachstellzeiten (Relaxationszeiten) der Goldionisierung hingewiesen werden. (A.8.9) und (A.8.10) können wie folgt umgeschrieben werden:

$$\frac{\delta N_R^+}{\delta t} = -\frac{N_R^+}{\tau_\rho} + (N_R - N_R^-) (\beta_\rho \rho + \beta_n \kappa_{DC})$$
(A.8.24)

$$\frac{\delta N_R^2}{\delta t} = -\frac{N_R^2}{\tau_n} + \left(N_R - N_R^*\right) \left(\alpha_p K_{AV} + \alpha_n n\right)$$
(A.8.25)

Unter der Voraussetzung, dass die Änderungen der hinteren Thermen in (A.8.24) und (A.8.25) klein sind, folgt für die Nachstellzeitkonstanten τ_p und τ_n :

$$\tau_{\rho} = \frac{1}{\beta_{\rho} (\rho + \kappa_{DV}) + \beta_{n} (n + \kappa_{DC})}$$
(A.8.26)

und

$$\tau_n = \frac{1}{\alpha_p (p + K_{AV}) + \alpha_n (n + K_{AC})}$$
(A.8.27)

(A.8.26) und (A.8.27) zeigen, dass diese Nachstellzeitenkonstanten von n und p abhängig sind und mit zunehmenden n- bzw. p-Konzentrationen kleiner werden. Deshalb wird die Ionisation der Goldatome bei hoher Injektion in einer Diode eine Änderung der Ladungsträgerkonzentrationen sehr schnell folgen können. Bild

A.8.3 zeigt Berechnungsergebnisse von τ_p und τ_n , wobei einfachheitshalber p = n angenommen wurde. Die verwendeten Parameter für Gold werden in Abschnitt A.9 beschrieben.

In einer Raumladungszone können p und n in (A.8.26) und (A.8.27) vernachlässigt werden. Besonders τ_n steigt dann stark an bis ca. 1,3 ms! τ_n und τ_p sind in der Raumladungszone stark temperaturabhängig.

<u>Bild A.8.3</u>: Die Nachstellzeitkonstanten der ionisierten Goldatome als Funktion der Ladungsträgerkonzentration (p = n). Parameter ist die Temperatur.

Für den stationären Fall können jetzt noch zwei Berechnungsbeispiele gegeben werden:

1. Hohe Injektion: n und p sind wesentlich größer als die Massenwirkungskonstanten. Aufgrund der höheren Einfangkoeffizienten für Löcher ist das Gold hauptsächlich positiv ionisiert. Es gilt:

N⁺ _R /N _R (300 K) = 79 %	N⁻ _R /N _R (300 K) = 0,2 %
N ⁺ _R /N _R (400 K) = 87 %	N_{R}/N_{R} (400 K) = 0,2 %

2. Raumladungszone: n und p sind wesentlich kleiner als die Massenwirkungskonstanten. Aufgrund der Nähe des Donatorniveaus zum Valenzband ist das Gold jetzt hauptsächlich negativ ionisiert. Es gilt:

N⁺ _R /N _R (300 K) ≈ 0 %	N ⁻ _R /N _R (300 K) = 92 %
N ⁺ _R /N _R (400 K) ≈ 0 %	N_{R}/N_{R} (400 K) = 96 %

Als Letztes werden die durch Gold eingestellten Ladungsträgerlebensdauerwerte bei hoher Injektion und im stationären Fall berechnet. Die allgemeine Definition der Ladungsträgerlebensdauer lautet für Löcher bzw. Elektronen:

$\tau = \frac{p - p_0}{p - p_0}$	(4 8 28)
$c_{p}^{\mu} = \sum R_{p} + R_{A} - G_{I}$	(A.0.20)

$$\tau_n = \frac{n - n_0}{\sum R_n + R_A - G_1}$$
(A.8.29)

Hierin werden jetzt die Konzentration n_0 und p_0 im thermischen Gleichgewicht und weiter die Augerrekombination R_A und die Stoßionisation G_1 vernachlässigt. Mit $R_n = R_p$ im stationären Fall folgt:

$$\tau = \tau_p = \frac{n}{R_p} = \frac{\rho}{R_p}$$
(A.8.30)

Aus (A.8.1) folgt für R_p , wenn $p \gg K_{AV}$ und $p \gg K_{DV}$

$$R_{p} = \alpha_{p} N_{R}^{*} p + \beta_{p} N_{R}^{0} p \qquad (A.8.31)$$

Aus (A.8.2) folgt für R_n wenn $n \gg K_{AC}$ und $n \gg K_{DC}$:

$$\mathbf{R}_{n} = \alpha_{n} \mathbf{N}_{R}^{0} \mathbf{n} + \beta_{n} \mathbf{N}_{R}^{+} \mathbf{n}$$
(A.8.32)

(A.8.31) bzw. (A.8.32) in (A.8.30) eingesetzt ergibt:

$$\tau = \frac{1}{\alpha_n N_R^0 + \beta_n N_R^+} = \frac{1}{\alpha_p N_R^- + \beta_p N_R^0}$$
(A.8.33)

 N_{R}^{0} , N_{R}^{-} und N_{R}^{+} werden durch die Gleichungen (A.8.16) bis (A.8.20) vorgegeben. Hiermit folgt schließlich für die Ladungsträgerlebensdauer im stationären Fall bei hoher Injektion (n = p):

$$\tau = \frac{1 + \frac{\alpha_n}{\alpha_p} + \frac{\beta_p}{\beta_n}}{N_R(\alpha_n + \beta_p)}$$
(A.8.34)

Diese Gleichung wurde im Simulationsprogramm aufgenommen.

Bemerkung: Ein gleiches Modell für Gold veröffentlichte C.C. Abbas /20/. Berechnungen wurden in /20/ aber nur mit den stationären Gleichungen durchgeführt.

11.A.9 Die Rekombinationskoeffizienten und die Parameter der Massenwirkungsgesetze

Die Rekombination, die in den Abschnitten A.7 und A.8 beschrieben wurde, wird durch folgende Größen gekennzeichnet:

1. die Rekombinationskoeffizienten. (Englisch: thermal capture rate).

Hierbei werden r_n und r_p für Rekombinationszentren mit einem Energieniveau im verbotenen Band verwendet. α_n , α_p , β_n , und β_p werden für Rekombinationszentren mit zwei Energieniveaus im verbotenen Band verwendet.

2. die Parameter der Massenwirkungsgesetze.

Der Abstand zum Leitungsband bzw. zum Valenzband wird durch $E_c - E_D$ bzw. $E_D - E_V$ bei Donatoren und durch $E_c - E_A$ bzw. $E_A - E_V$ bei Akzeptoren gekennzeichnet. Weiter werden die Spinentartungsfaktoren B_D und B_A verwendet.

In der Literatur wurde bis jetzt sehr wenig über die Spinentartungsfaktoren von Rekombinationszentren geschrieben. Über die Lage der Energieniveaus ist am meisten bekannt. Für viele Dotierungen werden aber noch unterschiedliche Energieniveaus in der Literatur angegeben. Auch ist die Zahl der Energieniveaus oft unterschiedlich. Wenig ist bekannt über die Temperaturkoeffizienten der Energieniveaus. Ebenfalls ist wenig

bekannt über die Rekombinationskoeffizienten. Die Angaben sind oft nicht vollständig. Weiter differieren die Angaben je nach Literaturstelle oft um mehrere Zehnerpotenzen.

Unter anderem veröffentlichten folgende Autoren Rekombinationskoeffizienten und Parameter für Massenwirkungsgesetze:

S.M. Sze /21/, B.J. Baliga und S. Krishna /22/, J.M. Fairfield und B.V. Gokhale /23/, O. Engström und H.G. Grimmeiss /24/, D.V. Lang u.a. /25/, C. Hu und W.G. Oldham /26/ und R.H. Wu und A.R. Peaker /27/.

Die Werte der Energieniveaus in der 2. Auflage von S.M. Sze /21/ unterscheiden sich von den Werten in der ersten Ausgabe zum Teil erheblich. /24/ kann als wichtige Grundlage für die Arbeiten in /25/ betrachtet werden.

P.G. Wilson /28/ zeigt, dass in der Diode eine ganze Reihe von Rekombinationszentren auftreten kann. Er nennt folgende Elemente: Kupfer, Phosphor, Aluminium, Bor, Gold, Eisen und Mangan. Das mathematische Modell wird zu unübersichtlich, wenn alle diese Elemente berücksichtigt werden.

Außerdem sind die Konzentrationen oft unbekannt und schwanken je nach Fertigungsverfahren.

F. Mousty, P. Ostoja und L. Passari /29/ weisen ebenfalls auf diese zusätzlichen Elemente hin. Die Sauerstoffkonzentration im Silizium schwankt hierbei je nach Herstellverfahren zwischen 6 10¹⁵ und 1 10¹⁸ cm⁻ ³.

Weiter wurden in /29/ zusätzlich noch folgende Elemente im Silizium festgestellt: Gold, Chrom, Natrium, Antimon, Kohlenstoff und Stickstoff.

O. Engström und H.G. Grimmeiss geben in /24/ an: $E_c - E_A = 0,553$ V für das Goldakzeptorniveau und dass dieser Wert von der Temperatur unabhängig ist.

In /25/ dagegen wird angegeben, dass es auch möglich ist, dass nicht $E_c - E_A$, sondern $E_A - E_V$ temperaturunabhängig ist. Die Temperaturabhängigkeit der Rekombinationskoeffizienten von neutralen Störstellen wie z. B. α_n und β_p in Bild A.8.1 beträgt nach /24/, /25/ und /27/: T^{1/2}. Die Temperaturabhängigkeit der Rekombinationskoeffizienten von ionisierten Störstellen wie z.B. α_p und β_n in Bild A.8.1 beträgt nach /24/, /25/ und /27/: T^{1/2}. Die Temperaturabhängigkeit der Rekombinationskoeffizienten von ionisierten Störstellen wie z.B. α_p und β_n in Bild A.8.1 beträgt nach /24/, /25/ und /27/: T^{-0,8} bis T⁻².

In /24/ wird noch angenommen, dass das Donator- und Akzeptorniveau von Gold wie in Bild A.8.1 gekoppelt sind. Dagegen schreiben D.V. Lang u.a. in /25/, dass eine Entkopplung beider Niveaus auftreten kann. Das Donatorniveau gehört zu anderen Goldatomen als das Akzeptorniveau. Die Goldniveaus an sich sind hierbei keine einfachen, nur durch Gold selber bestimmte Niveaus. Vielmehr bilden sich Komplexe von Gold mit z. B. Grunddotierung, sonstige Verunreinigungen oder Kristallstörungen. Hieraus lässt sich erklären, warum die Rekombinationskoeffizienten in der Literatur so streuen: das Ausgangsmaterial ist verschieden, und es bilden sich unterschiedliche Komplexe. Bei der Bildung von Komplexen könnte die Getterung von Goldatome durch Phosphor eine Rolle spielen. Leider ist über das Verhältnis Donatorkomplexe zu Akzeptorkomplexe für den Fall, dass eine Entkopplung beider Komplexe auftritt, nichts bekannt.

R.H. Wu und A.R. Peaker /27/ bestätigen die Ansichten aus /25/, dass Gold keine einfache Störstelle ist und dass die Gold-Parameter Material- und Prozessabhängig sind. Auch in /27/ ist keine klare Aussage über die Temperaturabhängigkeit des Energieniveaus des Goldes vorhanden. Die Aussage aus /25/, dass das Donator- und Akzeptor-Niveau von Gold entkoppelt sind, konnte in /27/ nicht bestätigt werden. Für n-dotiertes Czochralskisilizium, also mit hoher Sauerstoffkonzentration, geben R.H. Wu und A.R. Peaker folgende Gold-Parameter an:

$$\alpha_{n} = 1,640 \cdot 10^{-9} \left[\frac{T}{300 \ K} \right]^{0.5} cm^{3}/s \quad \beta_{n} = 1,737 \cdot 10^{-8} \left[\frac{T}{300 \ K} \right]^{-1.5} cm^{3}/s \alpha_{p} = 1,737 \cdot 10^{-7} \left[\frac{T}{300 \ K} \right]^{-0.8} cm^{3}/s \quad \beta_{p} = 6,755 \cdot 10^{-8} \left[\frac{T}{300 \ K} \right]^{0.5} cm^{3}/s$$
(A.9.1)

Die Simulation zeigte, dass der Exponent von β_n zu gering war. Die richtige Temperaturabhängigkeit der Ladungsträgerlebensdauer wurde mit -1,60 als Exponent für β_n erreicht.

Auf der Bildung von Gold-Eisen-Komplexe weist S.D. Brotherton u.a. /30/ hin. Die Rekombination über diese Komplexe ist wesentlich stärker als über einzelne Goldatome. Da Eisen eine sehr hohe Beweglichkeit hat,

können diese Komplexe schon bei normalen Betriebsbedingungen (z. B. Temperatur = 150 °C) entstehen. Eine "Alterung" des Bauelementes kann hierbei die Folge sein, wenn die Eisenkonzentration zu hoch ist.

Um das mathematische Modell nicht zu überlasten, werden nur folgende Elemente aufgenommen:

- ein Donator für die n-Dotierung der Diode
- ein Akzeptor für die p-Dotierung der Diode
- ein Rekombinationszentrum mit wahlweise ein oder zwei Energieniveaus.

Zusätzlich zu den Gleichungen (A.9.1) wurden folgende Parameter für Bor, Phosphor und Gold in Silizium gewählt:

1. Für die effektiven Spinentartungsfaktoren B_D und B_A gilt:

- $\beta_D = 2$ für Phosphor und für das Donatorniveau des Goldes
- $\beta_A = 2$ für Bor und für das Akzeptorniveau des Goldes.

Für die Abstände zum Leitungsband bzw. zum Valenzband gilt nach /26/ bzw. /27/:

 $\begin{array}{ll} E_{C} - E_{D} = 0,044 \ V & (Phosphor) \\ E_{A} - E_{V} = 0,045 \ V & (Bor) \\ E_{D} - E_{V} = 0,35 \ V & (Gold, Donatorniveau, T = 300 \ K) \\ E_{C} - E_{A} = 0,55 \ V & (Gold, Akzeptorniveau, T = 300 \ K) \end{array}$

Temperatureinflüsse werden außer bei den Gleichungen (A.9.1) nur bei den Energieniveaus von Gold berücksichtigt. Dieser Temperatureinfluss ist, wie schon erwähnt wurde, unklar. Deshalb können die Energieniveaus von Gold entweder gegenüber dem Leitungsband oder gegenüber dem Valenzband auf konstanten Abstand gehalten werden. Standardeinstellung im Programm ist:

 $E_D - E_V =$ temperaturunabhängig und

 $E_c - E_A =$ temperaturunabhängig.

2. Für die Rekombinationskoeffizienten r_n und r_p von Phosphor und Bor geben C. Hu und W.G. Oldham /26/ den Wert 2 10⁻¹³ cm³/s an.

Nach /25/ muss für die Rekombinationskoeffizienten von neutralen Störstellen (r_p bei Donatoren und r_n bei Akzeptoren) die Temperatur mit T^{0,5} berücksichtigt werden. Für r_n bei den Donatoren und r_p bei den Akzeptoren wurde als Temperaturabhängigkeit T⁻¹ gewählt. Diese Wahl ist nach Abschnitt A.7 unkritisch.

Im Halbleitermodell wird noch folgende Annahme gemacht:

 Der Einfluss der elektrischen Feldstärke auf die Rekombinationskoeffizienten ist vernachlässigbar. S. Braun und H.G. Grimmeiss /31/ zeigen, dass α_p für Gold von der Feldstärke unabhängig ist, wenn |E| < 10⁵ V/cm.

Weitere Angaben liegen für Phosphor, Bor oder Gold nicht vor.

2. Es wird nicht zwischen Aluminium, Gallium und Bor unterschieden. Für alle 3 Dotierungsarten werden die Bor-Daten verwendet.

11.A.10 Die Augerrekombination

M.S. Tyagi und R. van Overstraeten /32/ geben eine ausführliche Übersicht über die Veröffentlichungen von theoretischen und experimentellen Daten der Augerrekombination. Nach /32/ sind zwei Augerprozesse nicht vernachlässigbar:

1. die Phonon-unterstützte Augerrekombination (Phonon-assisted) und

2. die Augerrekombination unterstützt durch Rekombinationszentren (Trap-assisted).

Nach /32/ gilt für die Phonon-assisted Augerrekombination:

 $R_{A} = a_{n}(n^{2}p - n_{i}^{2}n_{0}) + a_{p}(p^{2}n - n_{i}^{2}p_{0})$

(A.10.1)

Diese Gleichung gilt für 2 Phonon-unterstützte Prozesse, die unabhängig voneinander auftreten können. Im thermischen Gleichgewicht müssen beide Prozesse zu Null gehen. n₀ und p₀ sind deshalb die Elektronen und Löcherkonzentration im thermischen Gleichgewicht.

J. Dziewior und W. Schmid /33/ haben a_p und a_n getrennt gemessen. Sie geben folgende Werte an:

 $\begin{array}{ll} a_n \ (300 \ \text{K}) = 2,80 \ 10^{-31} \ \text{cm}^6 \ \text{s}^{-1} \\ a_p \ (300 \ \text{K}) = 0,99 \ 10^{-31} \ \text{cm}^6 \ \text{s}^{-1} \\ \end{array} \begin{array}{ll} a_n \ (400 \ \text{K}) = 2,80 \ 10^{-31} \ \text{cm}^6 \ \text{s}^{-1} \\ a_p \ (400 \ \text{K}) = 1,20 \ 10^{-31} \ \text{cm}^6 \ \text{s}^{-1} \\ \end{array}$

L. Huldt, N.G. Nilsson und K.G. Svantesson /34/ geben an, dass Phonon-assisted Augerrekombination der wichtigste Augerprozess ist. In /34/ wird die gemessene Summe $a_n + a_p$ für den Temperaturbereich 195 \leq T \leq 372 K angegeben. Die Werte aus /34/ stimmen sehr gut mit den Angaben aus /33/ überein.

W. Lochmann und A. Haug /35/ geben ebenfalls an, dass Phonon-assisted Augerrekombination der wichtigste Augerprozess ist. Sie geben nur theoretische Werte für a_p und a_n an im Temperaturbereich $70 \le T \le 400$ K.

Die theoretischen Werte von a_p aus /35/ stimmen ebenfalls sehr gut mit den Messergebnissen aus /33/ überein. Die theoretischen Werte von a_n in /35/ sind gegenüber /33/ um ca. einen Faktor 4 niedriger. Die Ursache dieser Abweichung ist unbekannt. Es werden somit nur die a_p -Werte aus /35/ verwendet.

Ausgehend von den a_p-Werten aus /35/ kann folgende Näherungsgleichung für a_p aufgestellt werden:

$$a_p = 0.72 \cdot 10^{-31} + 0.15 \cdot 10^{-34} \frac{T}{K} + 2.92 \cdot 10^{-37} \left(\frac{T}{K}\right)^2 cm^6 s^{-1}$$
 (A.10.2)

Die a_n -Werte werden durch Subtraktion der a_p -Werte nach (A.10.2) von den $a_n + a_p$ -Werten aus /34/ ermittelt. Für a_n folgt unterstehende Näherungsgleichung:

$$a_n = 0.67 \cdot 10^{-31} + 8.16 \cdot 10^{-34} \frac{T}{K} - 2.44 \cdot 10^{-37} \left(\frac{T}{K}\right)^2 cm^6 s^{-1}$$
 (A.10.3)

Mit (A.10.2) und (A.10.3) folgt für a_n und a_p bei 300 bzw. 400 K:

 $\begin{array}{ll} a_n \ (300 \ \text{K}) = 2,90 \ 10^{\text{-}31} \ \text{cm}^6 \ \text{s}^{\text{-}1} \\ a_p \ (300 \ \text{K}) = 1,03 \ 10^{\text{-}31} \ \text{cm}^6 \ \text{s}^{\text{-}1} \\ \end{array} \begin{array}{ll} a_n \ (400 \ \text{K}) = 3,54 \ 10^{\text{-}31} \ \text{cm}^6 \ \text{s}^{\text{-}1} \\ a_p \ (400 \ \text{K}) = 1,25 \ 10^{\text{-}31} \ \text{cm}^6 \ \text{s}^{\text{-}1} \end{array}$

11.A.11 Die Oberflächen-Rekombination

Nach Annahme 2 in Abschnitt A.1 wird Oberflächenrekombination nur noch an den Anschlüssen berücksichtigt. Die Gleichung für die Oberflächenrekombination lautet nach Spenke /1/:

$$R_{0} = \frac{pn - n_{i}^{2}}{\frac{1}{s_{p}}(n + n_{i}) + \frac{1}{s_{n}}(p + n_{i})}$$
(A.11.1)

Vorausgesetzt wird hierbei, dass die Rekombination über Rekombinationszentren in der Mitte des verbotenen Bandes stattfindet.

s_p und s_n sind die Oberflächenrekombinationsgeschwindigkeiten mit der Dimension cm/s. Bei hoher p-Dotierung folgt aus (A.11.1):

 $R_0 \approx s_n n$

(A.11.2)

Bei hoher n-Dotierung folgt aus (A.11.1):

$R_0 \approx s_p p$ (n und p sind hierin Minoritäten!)

Die Oberflächenrekombination muss in der Randbedingung der Differenzialgleichungen berücksichtigt werden. Für die jeweilige Minoritätsstromdichte wird gelten:

(A.11.3)

$$j_n = e R_0 \text{ und } j_p = j - e R_0 \text{ bzw. } j_p = e R_0 \text{ und } j_n = j - e R_0$$
 (A.11.4)

Mit (A.11.2) bzw. (A.11.3) folgt hieraus:

$$j_n \approx e s_n n bzw. j_p \approx e s_p p$$
 (A.11.5)

Oft wird in der Literatur der Feldstromanteil in der Minoritätsstromdichte noch vernachlässigt. Für die Randbedingungen folgt dann mit

$$j_n \approx eD_n \frac{dn}{dx}$$
 bzw. $j_p \approx -eD_p \frac{dp}{dx}$: (A.11.6)

$$\frac{dn}{dx} \approx \frac{s_n}{D_n} n \text{ bzw.} \frac{dp}{dx} \approx -\frac{s_p}{D_p} p \tag{A.11.7}$$

Diese vereinfachten Randbedingungen werden hier nicht benützt. In dieser Arbeit wird (A.11.4) in Kombination mit (A.11.1) verwendet.

Die Temperaturabhängigkeit der Oberflächenrekombinationsgeschwindigkeit wird in Analogie zu der Temperaturabhängigkeit der Rekombinationsparameter der Volumenrekombination gewählt:

$$s = s_0 \left[\frac{T}{300 \ K} \right]^{-1}$$
(A.11.8)

Das heißt: Die Oberflächenrekombinationsgeschwindigkeit hat in diesem Fall die gleiche Temperaturabhängigkeit wie die Rekombinationskoeffizienten rn der Donatoren bzw. rp der Akzeptoren. In der Literatur wurden keine eindeutigen Aussagen über die Temperaturabhängigkeit der Oberflächenrekombinationsgeschwindigkeit gefunden. Die Werte für so variieren in der Literatur in einem weiten Bereich. Dieses hängt mit der Oberflächenbeschaffenheit zusammen. Ist auf der Siliziumoberfläche ein Siliziumoxid oder ein Polysilizium angebracht, dann liegt so in der Größenordnung 10 bis 100 cm/s. Bei Metall auf Silizium (Ohmsche Kontakte) wird üblicherweise unendlich hohe Rekombination angenommen. Siehe /14/.

Interessant ist hierzu eine Veröffentlichung von J.G. Simmons und G.W. Taylor /36/ über Schottkykontakte. Sie berechnen eine effektive Rekombinationsgeschwindigkeit in der Raumladungszone am Metall-Silizium-Übergang. Die theoretische effektive Rekombinationsgeschwindigkeit ist spannungsabhängig und lautet für einen n-Emitter:

$$s_0 = 2\mu_n \sqrt{\frac{\phi e N_D}{2\varepsilon_0 \varepsilon_r}}$$
(A.11.9)

wobei $\phi = \phi_s - U$ und $\phi > \frac{kT}{e}$ ist.

 ϕ_s ist die Barrierenhöhe zwischen den Ferminiveaus im Metall und im Silizium außerhalb der Raumladungszone. U ist die angelegte Spannung. Bei N_D = 10^{19} cm 3 , μ_n = 100 cm 2 /Vs und ϕ >30 mV erreicht s_0 Werte über 3 10^7 cm/s. Dagegen geben H.C. de Graaff u.a. in /80/ Messwerte von s_0 an. Für Aluminium-n-Silizium-Kontakte wurde 3 10^5 cm/s gemessen. Wegen dieser Unterschiede bei s_0 wurde berechnet, wie groß der Einfluss von s_0 auf zwei wichtige Diodenparameter ist, nämlich:

- die Durchlassspannung
- die Ladungsträgerkonzentration am pn-Übergang. Diese Konzentration ist nämlich ein Maß für den Emitterwirkungsgrad.

Unterstehendes Bild zeigt typische Ergebnisse für ein p⁺-Emitter.

Bild A.11.1 zeigt, dass bei $s_0 > 10^7$ cm/s keine Änderung der Verhältnisse mehr auftritt. Physikalisch kann dieser Effekt wie folgt erklärt werden: Auch wenn die Rekombinationsgeschwindigkeit vom Rand weiter ansteigt, wird die Rekombination am Rand - die noch von der Minoritätskonzentration abhängig ist - nicht weiter ansteigen. Das Nachliefern von Minoritätsladungsträgern zum Rand hin geschieht nämlich maximal mit der Driftgeschwindigkeit ($\approx 10^7$ cm/s). Deshalb macht sich ein s_0 über 10^7 cm/s nicht mehr bemerkbar.

Bild A.11.1 zeigt weiterhin, dass bei $s_0 < 10$ cm/s ebenfalls keine Änderung im Diodenverhalten mehr auftritt. In diesem Fall wird nämlich die Rekombination über der Oberfläche vernachlässigbar gegenüber der SRHund Augerrekombination im Volumen.

Der linke Knickpunkt in der Kurve in Bild A.11.1 verschiebt sich nach rechts, wenn die Volumenrekombination erhöht wird.

Die Berechnungen wurden durchgeführt für p⁺-Emitter mit 2, 5 bzw. 50 µm Dicke, mit Gauß, Erfc oder abruptem Profil und bei 1 bzw. 0,01 A/cm² Durchlassstrom. Die obenstehenden Ergebnisse blieben für all diese Fälle gültig. Lediglich ist der Einfluss der Oberflächenrekombinationsgeschwindigkeit auf dem Diodenverhalten, um so geringer je dicker das p⁺-Gebiet ist. Der Einfluss von s₀ wird vernachlässigbar bei abrupten Emittern mit Emitterdicken über 20 µm. Aufgrund der Erkenntnisse aus Bild A.11.1 wurde für Metall-Silizium-Übergänge s₀ = 10⁷ cm/s gewählt. Seite 110

11.A.12 Die Stoßionisation

Für die Stoßionisation unter Einfluss eines hohen elektrischen Feldes gilt folgende Gleichung:

$$G_{I} = \frac{1}{e} \left[\alpha_{n}(\boldsymbol{E}) \cdot |\boldsymbol{j}_{n}| + \alpha_{p}(\boldsymbol{E}) \cdot |\boldsymbol{j}_{p}| \right]$$
(A.12.1)

Für die Multiplikatoren $\alpha_n(E)$ und $\alpha_p(E)$ geben R. van Overstraeten und H. de Man /37/ bei T = 300 K an:

für 1,75 $10^5 \le |E| \le 6,0 \ 10^5 \text{ V/cm}$:

$$\alpha_n = 7,03 \cdot 10^5 \exp\left[\frac{-1,231 \cdot 10^6}{|\mathbf{E}| \ \mathbf{V}^{-1} \mathbf{cm}}\right] \mathbf{cm}^{-1}$$
(A.12.2)

für 1,75 $10^5 \le |E| \le 4,0 \ 10^5 \text{ V/cm}$:

$$\alpha_{p} = 1,582 \cdot 10^{6} \exp\left[\frac{-2,036 \cdot 10^{6}}{|E| \ V^{-1} cm}\right] cm^{-1}$$
(A.12.3)

für 4,0 $10^5 \le |E| \le 6,0 \ 10^5 \text{ V/cm}$:

$$\alpha_{p} = 6,71 \cdot 10^{5} \exp\left[\frac{-1,693 \cdot 10^{6}}{|E| \ V^{-1} cm}\right] cm^{-1}$$
(A.12.4)

Bei sehr hohen elektrischen Feldstärken können die Diffusionsstromdichten in (A.2.4) und (A.2.5) vernachlässigt werden. Für G_1 folgt dann aus (A.12.1):

$$G_{I} = \alpha_{n} n \mu_{n} |E| + \alpha_{p} p \mu_{p} |E|$$

In Abschnitt A.14 wird gezeigt, dass $\mu_n E$ und $\mu_p E$ mit der jeweiligen max. Driftgeschwindigkeit identisch ist. Folgende Annahmen werden gemacht:

(A.12.5)

- 1. Die Gleichungen (A.12.2) und (A.12.3) gelten auch bei elektrischen Feldstärken |E| < 1.75 10⁵ V/cm. Feldstärken über 4,0 10⁵ V/cm traten in der Simulation nicht auf.
- 2. Die Gleichungen (A.12.1) bis (A.12.4) gelten auch im dynamischen Fall. C. Shekhar und W.S. Khokle geben in /38/ an, dass die Zeitkonstante der Stoßionisation in der Größenordnung 10⁻¹³ s liegt. Die Verwendung der stationären Gleichungen ist hier also zulässig, weil alle anderen Vorgänge viel größere Zeitkonstanten besitzen.

W.N. Grant gibt in /39/ die Temperaturabhängigkeit von α_n und α_p an. Nach H. Schlangenotto /40/ ist der Temperaturkoeffizient von α_n in /39/ zu groß. Es folgt:

$$\alpha_{n} = 7,03 \cdot 10^{5} \exp\left[\frac{-1,231 \cdot 10^{6} - 1100(T/K - 300)}{|E| V^{-1} cm}\right] cm^{-1}$$
(A.12.6)

$$\alpha_{p} = 1,582 \cdot 10^{6} \exp\left[\frac{-2,036 \cdot 10^{6} - 1100(T/K - 300)}{|E| V^{-1} cm}\right] cm^{-1}$$
(A.12.7)

Nach H. Schlangenotto /40/ liefern die Overstraeten-Werte /37/ zu niedrige Durchbruchspannungen. Höhere Durchbruchspannungen werden berechnet, wenn die Ergebnisse von T. Ogawa /41/ verwendet werden.

Hierbei wurde α_n direkt von /1/ übernommen. (α_p wurde von H. Schlangenotto /40/ aufgrund von experimentellen Ergebnissen korrigiert. Es folgt somit:

$$\alpha_{n} = 7,5 \cdot 10^{5} \exp\left[\frac{-1,39 \cdot 10^{6} - 1100(T/K - 300)}{|E| V^{-1} cm}\right] cm^{-1}$$
(A.12.8)
$$\alpha_{p} = 7,5 \cdot 10^{5} \exp\left[\frac{-2,05 \cdot 10^{6} - 1100(T/K - 300)}{|E| V^{-1} cm}\right] cm^{-1}$$
(A.12.9)

Die Gleichungen (A.12.6) und (A.12.7) werden bevorzugt, weil hiermit eine Auslegung von Bauelementen zur sicheren Seite hin gewährleistet ist. Die gemessenen Durchbruchspannungen liegen dann eher höher als die berechneten Werte.

Bemerkung: Unterschiede zwischen Messungen und Berechnungen von Durchbruchspannungen sind ggf. auch auf zu ungenaue Angaben der Grunddotierung (± 10 %) zurückzuführen und nicht auf den oben stehenden Modellparameter.

11.A.13 Die Beweglichkeit von Löchern und Elektronen

Mathematische Modelle, Berechnungen bzw. Messungen der Beweglichkeiten wurden u.a. veröffentlicht durch:

G.L. Pearson und J. Bardeen /13/, W. Anheier /42/, F. Berz, R.W. Cooper und S. Fagg /43/, S.S. Li und W.R. Thurber /44/, S.S. Li /45/, M. Finetti, R. Galloni und A.M. Mazzone /46/, N.D. Arora,

J.R. Hauser und D.J. Roulston /47/, F. Dannhäuser /48/, J. Krause /49/, W.R. Thurber u.a. /50/,

H. Brooks /51/ und /52/, N.H. Fletcher /53/, V. Grivitskas, M. Willander und J. Vaitkus /54/,

C. Herring /55/, D.E. Burk und V. de La Torre /56/, M.C. Carotta, M. Merli und L. Passari /57/,

J.G. Fossum, D.E. Burk und S-Y. Yung /58/, A. Neugroschel /59/ und H.S. Bennett /60/.

In diesen Veröffentlichungen werden folgende Streuungsmechanismen erwähnt und zum Teil eingehend beschrieben:

- Streuung am Kristallgitter
- gegenseitige Streuung der Ladungsträger
- Streuung an ionisierten Störstellen
- Streuung an neutrale Störstellen
- Streuung an Kristallstörungen.

Für das hier verwendete Modell werden folgende Annahmen gemacht:

- Vernachlässigbare Streuung an Kristallstörungen. Das Basismaterial der Diode ist ideal.
 M. Finetti, R. Galloni und A.M. Mazzone /46/ beschreiben, dass durch Ionenimplantation und durch Diffusion bei hoher Temperatur Kristallstörungen eingebaut werden. Durch Streuungen an diese Kristallstörungen werden die Beweglichkeiten von Löchern und Elektronen sinken. Dieser Effekt wird hier vernachlässigt.
- Zwischen der Streuung an neutralen und an ionisierten Störstellen wird nicht unterschieden. Nach S.S. Li /45/ muss die Streuung an neutralen Störstellen nur bei niedrigen Temperaturen oder hohen Dotierungskonzentrationen berücksichtigt werden. In den Gleichungen für die Beweglichkeiten werden hier die wirklichen Störstellenkonzentrationen eingesetzt.
- 3. Niedrige elektrische Feldstärken.
- Für hohe elektrische Feldstärken siehe Abschnitt A.14.
- 4. Das Beweglichkeitsmodell gilt für Majoritäts- und Minoritäts-Ladungsträger.

D.E. Burk und V. de La Torre /56/ beschreiben, dass μ_p in n-Silizium bei Störstellen-Konzentrationen unter 2 10¹⁹ cm⁻³ bis zum Faktor 2 größer ist als μ_p in p-Silizium. Bei Störstellen-Konzentrationen über 2 10¹⁹ cm⁻³ ist μ_p in n-Silizium deutlich kleiner als in p-Silizium. Bei Störstellen-Konzentrationen unter 10¹⁵ cm⁻³ treten keine Abweichungen auf.

M.C. Carotta, M. Merli und L. Passari /57/ beschreiben, dass μ_n in p-Silizium bei p-Konzentrationen unter 10¹⁸ cm⁻³ vergleichbar ist mit μ_n in n-Silizium. Die Unterschiede mit anderen Literaturstellen liegen in der

Größenordnung der Messgenauigkeit.

J.G. Fossum, D. Burk und S-Y. Yung /58/ bestätigen die Angaben aus /56/. Die Daten, die hier für die Verengung des Bandabstandes verwendet wurden, weichen allerdings stark von den Werten in Bild A.4.1 ab.

A. Neugroschel /59/ gibt an, dass μ_n in p- und n-Silizium bei Störstellen-Konzentrationen um 10^{15} cm⁻³ keine signifikanten Abweichungen aufweist. μ_p ist in n-Silizium bei Störstellen-Konzentrationen um 10^{15} cm⁻³ um 30 % höher als μ_p in p-Silizium.

H.S. Bennett /60/ gibt die Beweglichkeiten an für Störstellen-Konzentrationen von 2 10^{19} bis 8 10^{19} cm⁻³. Er schreibt: μ_p in n-Silizium ist geringfügig (ca. 20%) größer als μ_n in p-Silizium. μ_n in p-Silizium ist um fast einen Faktor 3 größer als μ_n in n-Silizium.

All diese Aussagen gelten nur für 300 K. Temperaturabhängigkeiten wurden nicht angegeben. Die Aussagen widersprechen sich zum Teil. Eine geschlossene Theorie bzw. ein vollständiges Modell für die Minoritätsbeweglichkeit mit Temperatureinfluss kann somit noch nicht gegeben werden.

Das mathematische Modell für die Beweglichkeit nach F. Berz /43/ ist unbefriedigend, weil hierin die Störstellenbeweglichkeit absinkt, wenn die Konzentrationen von n und p sehr klein werden. Hiermit geht dann die gesamte Beweglichkeit zurück. Sehr kleine Konzentrationen von n und p treten beim Ausräumen des pn-Überganges auf, also wenn die Diode in Sperrrichtung betrieben wird.

Ein Nachteil des Modells von W. Anheier /42/ ist das Fehlen des Temperatureinflusses. Dieser Temperatureinfluss wird im Modell von N.D. Arora u.a. /47/ berücksichtigt.

Die Gleichungen für die Beweglichkeiten lauten nach /47/:

$$\mu_{n} = 88 \cdot T^{-0.57_{n}} + \frac{1251,81 \cdot T^{-2,33_{n}}}{1 + \left[\frac{N}{1,26 \cdot 10^{17} \cdot T_{n}^{2,4}}\right]^{\alpha}} cm^{2} V^{-1} s^{-1}$$
(A.13.1)

$$\mu_{p} = 54, 3 \cdot T^{-0.57_{n}} + \frac{406, 97 \cdot T^{-2.23_{n}}}{1 + \left[\frac{N}{2, 35 \cdot 10^{17} \cdot T_{n}^{2,4}}\right]^{\alpha}} cm^{2} V^{-1} s^{-1}$$
(A.13.2)

Hierin ist:

 $\alpha = 0.88 \cdot T^{-0.146_n} \tag{A.13.4}$

und

$$T_n = \frac{T}{300 \ K} \tag{A.13.4}$$

Bei Arora ist N die Dotierungskonzentration. Die Träger-Träger-Streuung wird nicht berücksichtigt.

W. Anheier /42/ ersetzt deshalb N durch die Gleichung:

$$N = (1-a) N_{st} + a (n + p) mit a = 0,33$$
 (A.13.5)

Hierin ist N_{St} die Summe der Störstellen:

$$N_{St} = N_A + N_D + N_R \tag{A.13.6}$$

Mit a kann der Einfluss der Träger-Träger-Streuung eingestellt werden. In diesem Bericht wurde a als Fit-Parameter bei der Berechnung der Durchlasskennlinien verwendet. Sowohl bei 25 °C als auch bei 125 °C wurden optimale Ergebnisse erreicht mit a = 0,7.

Die Beweglichkeiten nach (A.13.1) bis (A.13.6) erscheinen besonders bei niedriger Dotierung zu niedrig, wenn verglichen wird mit den Angaben aus /44/, /45/ und /50/. H. Schlangenotto /40/ hat ein Beweglichkeitsmodell

aufgestellt, das basiert auf den Modellen bzw. Gleichungen von H. Brooks /51/, /52/, N.H. Fletcher /53/ und C. Herring /55/.

Die Gleichungen wurden dabei in der Beweglichkeit als Funktion der Dotierung angepasst an den Angaben aus /44/, /45/ und /50/. Für die Beweglichkeit bei hoher Injektion wurden die Messungen aus /48/, /49/ und /54/ herangezogen. Das Gleichungssystem für die Beweglichkeit lautet somit nach H. Schlangenotto:

Für Elektronen:

$$\mu_{L} = 1437 \cdot T_{n}^{-2.2} \ cm^{2} / Vs \tag{A.13.7}$$

Für Löcher:

$$\mu_{L} = 469 \cdot T_{n}^{-2.2} \ cm^{2} / Vs \tag{A.13.8}$$

 μ_L ist die Beweglichkeit bedingt durch die Streuung am Kristallgitter. Für T_n gilt (A.13.4).

Die Beweglichkeit μ_I , bedingt durch die Streuung an Störstellen ist:

$$\mu_{I} = \frac{A}{\sqrt{T}} / K \frac{x}{\ln(1+x) - \left(\frac{x}{1+x}\right)C}$$
(A.13.9)

Hierin ist:

 $x = x_0^{\gamma}$ (A.13.10)

mit:

$$x_0 = \frac{BT^2}{N_{St}}$$
 (A.13.11)

Für Elektronen gilt:

A = $1170 \text{ cm}^2/\text{Vs}$ B = 1,1 $10^{16} \text{ cm}^{-3} \text{ K}^{-2}$ C = 0

$$\gamma = \frac{0.7}{1+61 \, x_0^{-0.7}} \tag{A.13.12}$$

Für Löcher gilt:

A = 535 cm²/Vs B = 6,85 10¹⁴ cm⁻³ K⁻² C = 0,5 γ = 1 N_{st} ist die Summe der Störstellen.

Die Beweglichkeit µc bedingt durch die gegenseitige Streuung von Löcher an Elektronen und umgekehrt ist:

$$\mu_{c} = \frac{14,88 \cdot 10^{20} \cdot (T/300 \text{K})^{-0.52}}{\sqrt{np} \cdot \ln \left[1 + \frac{7,87 \cdot 10^{8} \cdot (T/\text{K})^{2}}{(np)^{1/3}} \right]}$$
(A.13.13)

Der Zähler in (A.13.13) weicht von den Angaben in /40/ ab und wurde aufgrund von eigenen Diodenmessungen (Durchlass und Rückstrom) bei T = 20 °C bzw. 140 °C sowie Simulationen korrigiert.

Die Faktoren in dieser Gleichung wurden so gewählt, dass der Fehler zwischen dem Modell und den Messergebnissen aus /54/ minimal ist. Die Messergebnisse aus /48/ und /49/ stimmen bei n >10¹⁶ sehr gut mit den Ergebnissen aus /54/ überein. Nach /54/ spielt die Streuung von Löchern bzw. Elektronen untereinander eine untergeordnete Rolle. Dieser Effekt wird durch die geeignete Parameterwahl in (A.13.13) mit abgedeckt.

Die gesamte Beweglichkeit ist jetzt:

$$\mu = \frac{F(Z)}{\frac{1}{\mu_{L}} + \frac{1}{\mu_{l}} + \frac{1}{\mu_{c}}}$$
(A.13.14)

wobei

$$Z = \frac{\mu_L}{\mu_L + (\mu_l^{-1} + \mu_c^{-1})^{-1}}$$
(A.13.15)

F(Z) ist eine statistische Funktion, die die Beweglichkeiten miteinander verknüpft.

Für F(Z) gilt:

$$F(Z) = (1+Z) \int_{0}^{\infty} \frac{x^{3} e^{-x}}{x^{2} + 6Z} dx$$
 (A.13.16)

F. Berz u.a. /42/ nähern F(Z) durch folgende Gleichung an:

$$F = \frac{0,0954 + 0,473Z - 0,383Z^{2}}{0,0956 + 0,866Z - 0,776Z^{2}}$$
Für Z gilt: $0 \le Z \le 1$. F hat ein Minimum bei Z = 0,4174. Für F folgt:
F(0) = 0,9979 F(0,4174) = 0,7025 F(1) = 0.9989
(A.13.17)

Bemerkung: Wesentlich genauer wäre
$$F = \frac{0,0944 + 0,798Z - 0,618Z^2}{0,0956 + 1,235Z - 0,942Z^2}$$
 als Näherung für (A.13.16). Hier wird

aber weiter mit (A.13.17) gerechnet.

(A.13.14) und (A.13.15) wurden ebenfalls von F. Berz u.a. /43/ vorgegeben.

Das Modell (A.13.7) bis (A.13.17) wird bevorzugt weil:

- die Träger-Träger-Streuung besser integriert wurde,

- die damit verbundenen Temperaturabhängigkeiten auch besser berücksichtigt wurden,'

- der Mehraufwand an Rechenzeit kaum ins Gewicht fällt.

11.A.14 Die Beweglichkeit von Löchern und Elektronen bei hohen elektrischen Feldstärken

In Abschnitt A2.13 wurde die Beweglichkeit der Löcher und Elektronen bei niedrigen elektrischen Feldstärken beschrieben. Bei hohen elektrischen Feldstärken sinkt die Beweglichkeit, die definiert wird als das Verhältnis von der Driftgeschwindigkeit v_d zur elektrischen Feldstärke E:

 $\mu = v_d / E$

(A.14.1)

Bei niedrigen Feldstärken ist die Driftgeschwindigkeit v_d proportional zur Feldstärke E. µ ist konstant. Bei hohen Feldstärken wird die Driftgeschwindigkeit konstant. Die Beweglichkeit sinkt dann umgekehrt

proportional zur elektrischen Feldstärke. Für die Beweglichkeit kann folgende Gleichung aufgestellt werden, die auch durch W. Anheier /42/ verwendet wurde.

$$\mu = \frac{\mu_0}{\left\{1 + \left[\frac{\mu_0 |\mathcal{E}|}{V_{d \max}}\right]^{\beta}\right\}^{1/\beta}}$$
(A.14.2)

Hierin ist μ_0 die Beweglichkeit bei niedrigen elektrischen Feldstärken nach Abschnitt A.13. $v_{d max}$ ist die maximale Driftgeschwindigkeit. Bei sehr großen Feldstärken folgt aus (A.14.2):

$$\mu = v_{d \max} / |\mathsf{E}| \tag{A.14.3}$$

Aus (A.14.2) folgt weiter, dass die Abnahme von μ erst bei höheren Feldstärken einsetzt, wenn μ₀ kleiner ist. Dieser Effekt wird durch L. Zanfi, A. Losi, C. Jacoboni und C. Canali in /61/ beschrieben. C. Canali, G. Majni, R. Minder und G. Ottaviani geben in /62/ folgende Werte für ß an:

Für Elektronen

$$\beta = 2,57 \cdot 10^{-2} \left(\frac{T}{K}\right)^{0.66}$$
(A.14.4)

ß (300 K) = 1,109 ß (400 K) = 1,341

und für Löcher

$$\beta = 0.46 \left(\frac{T}{K}\right)^{0.17}$$
(A.14.5)

Weiter werden folgende Werte für $v_{d max}$ angegeben in /61/:

Für Elektronen

$$V_{d max} = 1,434 \cdot 10^9 \left(\frac{T}{K}\right)^{-0.87} cm/s$$
 (A.14.6)

 $V_{d \max}$ (300 K) = 1,003 10⁷ cm/s

 $v_{d \max}$ (400 K) = 0,781 10⁷ cm/s

und für Löcher

$$V_{d max} = 1,624 \cdot 10^8 \left(\frac{T}{K}\right)^{-0.52} cm/s$$
 (A.14.7)

 $v_{d \max}$ (300 K) = 0,837 10⁷ cm/s

 $v_{d \max}$ (400 K) = 0,720 10⁷ cm/s

Folgende Annahmen werden gemacht:

- 1. v_{d max} ist unabhängig von der Dotierungskonzentration. In Wirklichkeit nimmt v_{d max} ab, wenn die Dotierungskonzentration zunimmt. Dieser Effekt wird hier vernachlässigt.
- Die Kristallrichtung ist <111> . C. Canali, G. Ottaviani und A. Alberigi Quaranta /63/ beschreiben, dass der Einfluss der elektrischen Feldstärke auf die Beweglichkeit je nach kristallografischer Richtung verschieden ist. Die Ergebnisse zeigen, dass μ_n in der <111>-Richtung größer ist als μ_n in der <100>-Richtung und dass μ_p in der <100>-Richtung größer ist als μ_p in der <111>-Richtung. In allen weiteren Rechnungen werden hier nur die Werte für die <111>-Richtung betrachtet.

Seite 116

W. Anheier /42/ erwähnt, dass die Gleichung (A.14.2) bei in Vorwärtsrichtung betriebenen Dioden nicht gültig ist. Die Ladungsträger bewegen sich dann entgegen der Feldrichtung und werden abgebremst. Bei hoher Injektion allerdings können Feldrichtung und Stromrichtung wieder übereinstimmen. Deshalb wird die Gleichung (A.14.2.) in /24/ nur verwendet, wenn E < 0 und j_p < 0 bzw. j_n < 0. Sonst gilt anstatt (A.14.2):

 $\mu = \mu_0$

(A.14.8)

(A.14.9)

Diese Bedingung für die Anwendung der Gleichung (A.14.2) in /42/ lässt sich allgemeiner mit der sign-Funktion formulieren. Es folgt als Bedingung für den Einsatz der Gleichung (A.14.2):

 $sign(E) = sign(j_n) bzw. sign(E) = sign(j_p)$

11.A.15 Das Dotierungsprofil einer Diode

Das Bild A.15.1 zeigt das vereinfachte Dotierungsprofil einer psn-Diode. In den Randgebieten ist die Dotierungskonzentration ortsabhängig. Im Mittelgebiet ist dagegen eine konstante Dotierungskonzentration vorhanden. Diese Grunddotierung kann eine n- oder p-Dotierung sein. (Im Bild: n)

Bild A.15.1: Vereinfachtes Dotierungsprofil einer psn-Diode

S.K. Ghandi /64/ beschreibt, dass für tiefe Dotierungen mit d_n bzw. d_p in der Größenordnung 50 bis 200 µm das Dotierungsprofil durch eine einfache e-Funktion angenähert werden kann.

Es folgt dann:

$$N_{A} = N_{A \max} \cdot \exp\left[\frac{-d - d_{p} - x}{X_{A0}}\right]$$

$$N_{D} = N_{D \min} + \left(N_{D \max} - N_{D \min}\right) \cdot \exp\left[\frac{x - (d + d_{n})}{X_{D0}}\right]$$
(A.15.2)

 $d_n,\,d_p,\,N_{A\,max},\,N_{D\,max}$ und $N_{D\,min}$ werden in Bild A.15.1 definiert.

Für x gelten die Koordinaten des Bildes A.15.1

Die Gleichungen (A.15.1) und (A.15.2) werden auch durch R. van Overstraeten und H. de Man /37/ angegeben.

In Bild A.15.1 ist die Grunddotierungskonzentration: $N_{\text{D}\,\text{min}}$

Aus $N_A = N_{D \min}$ folgt für d_p :

$$d_{p} = X_{A0} \cdot \ln \frac{N_{A \max}}{N_{D \min}}$$
(A.15.3)

Aus $N_D = 2 N_{D \min}$ folgt für d_n :

$$d_n = X_{DO} \cdot \ln \left[\frac{N_{D max}}{N_{D min}} - 1 \right]$$
(A.15.4)

X_A, X_D, N_{A max} und N_{D max} sind je nach Dotierungsart und Diffusionsverfahren verschieden.

R.P. Mertens, H.J. de Man und R.J. van Overstraeten /65/ beschreiben, dass bei hoher Dotierung eine Verengung des Bandabstandes auftritt. Unter Einfluss dieser Verengung wird ein effektives Dotierungsprofil angegeben. Das effektive Dotierungsprofil liegt niedriger als das tatsächliche Profil und hat maximale Werte in der Größenordnung 10¹⁸ cm⁻³. In dieser Arbeit werden die Berechnungen mithilfe der tatsächlichen Dotierungsprofile durchgeführt. Die Verengung des Bandabstandes wurde in Abschnitt A.4 berücksichtigt.

I. Ruge /66/ und A.S. Grove /67/ geben an, dass die Diffusionskonstanten der Donatoren bzw. Akzeptoren beim Diffusionsprozess unter Umständen nicht konstant sind. Die Diffusionskonstanten können abhängig sein von der elektrischen Feldstärke, von der Dotierungskonzentration und von Kristallstörungen. Weiter kann die Diffusion über Zwischengitterplätze stattfinden und beim Anbringen der elektrischen Anschlüsse kann ein Ausdiffundieren von Donatoren und Akzeptoren auftreten. R.B. Fair /68/ beschreibt ausführlich die Diffusion über Leerstellen. R.B. Fair beschreibt weiterhin den Emitter-Push-Effekt der z. B. bei Transistoren auftritt: die Basisdotierung wird nach der Emitterdiffusion weiter ins Innere des Transistors verdrängt. Es gibt also Wechselwirkungen zwischen den unterschiedlichen Dotierungen.

Bemerkung:

In ADIOS wird anstatt von (A.15.4) vereinfacht mit $d_n = X_{D0} \cdot \ln \left[\frac{N_{D max}}{N_{D min}} \right]$ gerechnet.

Wegen der Vielzahl an Möglichkeiten wurden zusätzlich noch folgende anwählbare Dotierungsprofile ins Simulationsprogramm mit aufgenommen:

1. Gauß-Funktion:

$$N_{A} = N_{A \max} \cdot \exp\left\{-\frac{\left[d + d_{p} + x\right]^{2}}{X_{A}}\right\} \quad \text{mit} \quad d_{p}^{2} = X_{AO} \cdot \ln \frac{N_{A \max}}{N_{D \min}}$$
(A.15.5)

2. Komplementäre Error-Funktion:

$$N_{A} = N_{A max} \cdot erfc \left[\frac{-d - d_{p} - x}{X_{A}} \right]$$
(A.15.6)

wobei:

$$erfc(x) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-t^2) dt$$

 X_A muss hier iterativ berechnet werden, wenn d_p, $N_{A max}$ und $N_{D min}$ vorgegeben werden.

3. Von Gitterpunkt zu Gitterpunkt frei wählbarem Profilverlauf.

Diese 3 Möglichkeiten gibt es in äquivalenter Weise auch für Donatoren. Im Simulationsprogramm sind folgende Möglichkeiten für Donatoren und Akzeptoren vorgesehen:

- 1. exp, Gauß- oder erfc-Profil überlagert mit:
- 2. exp, Gauß- oder erfc-Profil überlagert mit:
- 3. frei wählbarem Profilverlauf.

Für die Grunddotierung kann n- oder p-Type gewählt werden. Hiermit werden alle Möglichkeiten mit einem Minimum an Eingabeaufwand abgedeckt.

Für die Rekombinationszentren - wie Gold - gelten eigene Gesetze. J.L. Lambert /69/ zeigt, dass das Goldprofil an der Außenseite eines homogenen Halbleiters näherungsweise dem üblichen Dotierungsprofil mit e-Funktion nach (A.15.1) entspricht. In der Mitte des Halbleiters tritt dagegen ein Bereich konstanter Goldkonzentration auf. Die Randkonzentrationen liegen in der Größenordnung 10¹⁷ bis 10¹⁸ cm⁻³. Das flache Teilstück des Profils fängt nach ca. 25 µm an.

J.L. Lambert /69/ zeigt außerdem, dass die Goldkonzentration bei steigender Dotierungskonzentration zunimmt. Die genauen Zusammenhänge zwischen Goldkonzentrationen und Dotierungskonzentration sind noch nicht bekannt.

Hier wird mit einem von Gitterpunkt zu Gitterpunkt frei wählbarem Dotierungsverlauf für Gold gerechnet. Der Kick-out-Mechanismus gibt die bis jetzt beste Erklärung für die Golddiffusion.

11.A.16 Die Rekombinationsströme in den hoch dotierten Randgebieten

In Bild A.16.1 werden die Rekombinationsströme $j_n(-d)$ bei x = -d und $j_p(+d)$ bei x = +d angegeben. J. Burtscher, F. Dannhäuser und J. Krausse /70/ beschreiben die Rekombination der Randgebiete. Die Rekombination der Randgebiete wird durch die Parameter h_n und h_p für das jeweilige Randgebiet festgelegt. In /70/ wird gezeigt, dass dieser h-Parameter nicht nur bei Leistungsdioden und Leistungsthyristoren eine Rolle spielt. Die h-Parameter beeinflussen die Emitterwirkungsgrade verschiedenster Transistoren. Die h-Parameter liegen im Bereich 1 10⁻¹⁴ bis 6 10⁻¹⁴ cm⁴ s⁻¹. h_p ist i. A. ca. 50% größer als h_n .

F. Berz, R.W. Cooper und S. Fagg /43/ berechnen die h-Parameter der hoch dotierten Randgebiete bei nicht abrupten Übergängen. Sie zeigen, dass die h-Parameter bei Stromdichten von 100 bis 500 Acm⁻² annähernd konstant sind. Messungen bestätigen die Rechenergebnisse.

In /43/ und /70/ werden folgende Gleichungen für die Rekombinationsströme angegeben:

$$j_n(-d) = e h_p n^2(-d)$$
 (A.16.1)
 $j_n(+d) = e h_n n^2(+d)$ (A.16.2)

H. Schlangenotto, H. Maeder und J. Dziewior /71/ untersuchten h-Parameter in Leistungsdioden und Thyristoren. Sie kamen zu folgenden Ergebnissen:

- 1. Die Rekombination der hoch dotierten Randgebiete kann bei Durchlassbelastung in den meisten Fällen durch konstante h-Parameter beschrieben werden.
- 3. Die h-Parameter sind annähernd konstant im Bereich von 0 bis 120 °C.
- 4. Eine eindeutige Abhängigkeit der h-Parameter von der Dotierungskonzentration oder von der Dicke von epitaktischen p⁺-Schichten bei fester Konzentration p⁺ wurde nicht festgestellt. (Scharfetter!)
- 5. Der h_p-Parameter wird durch eine ausgedehnte Rekombinationszone um den pn-Übergang erklärt. Als Ursache dieser Zone werden vor allem Versetzungen im Gitter angesehen. Diese Versetzungen bilden sich an Übergängen von starker zu schwacher Dotierung.

H. Schlangenotto und H. Maeder weisen dagegen in /72/ eine nichtlineare Rekombination in den Randgebieten nach. Sie führen neben den Parametern h_n und h_p noch zusätzliche Rekombinationsparameter ein:

$j_n(-d) = e s_p n(-d) + e h_p n^2(-d)$	(A.16.3)
$j_p(+d) = e s_n n(+d) + e h_n n^2(+d)$	(A.16.4)

Zur Ableitung der h-Parameter als Funktion der Eigenschaften der hoch dotierten Gebiete ist die Kenntnis des Verlaufes des Minoritätsstromes bzw. der Minoritätsladungsträger im hoch dotierten Gebiet erforderlich. Ausgangspunkt hierbei sind die Basisgleichungen (A.2.1) bis (A.2.8). Folgende Annahmen werden gemacht:

- 1. Es herrscht der stationäre Zustand.
- 2. Die Augerrekombination und Stoßionisation ist vernachlässigbar.
- 3. Der Emitter hat eine konstant hohe Dotierung und der Obergang ist abrupt.
- 4. Die Rekombination lässt sich mit der vereinfachten SRH-Gleichung beschreiben:

 $R_{SRH} = p / \tau_p \quad \text{für den } n^+\text{-} \text{Emitter}$ $R_{SRH} = n / \tau_n \quad \text{für den } p^+\text{-}\text{Emitter}$ (A.16.5)
(A.16.6)

Die Rekombination ist somit nur von der Minoritätskonzentration abhängig.

- 5. Die elektrische Feldstärke ist im gesamten Emitter vernachlässigbar. Dies entspricht: n « N_A bzw. p « N_D.
- 6. Es gibt keine Verengung des Bandabstandes und keine Temperaturgradienten.

- 7. Die Beweglichkeiten und Ladungsträgerlebensdauer sind im gesamten Emitter konstant.
- 8. Wegen der sehr hohen Oberflächenrekombinationsgeschwindigkeit an den Metall-Silizium-Übergängen herrscht dort ein annähernd thermisches Gleichgewicht. Die Minoritätskonzentrationen können gegenüber den Konzentrationen im Volumen auf Null gesetzt werden.

Aus den Basisgleichungen (A.2.2) und (A.2.5) lässt sich zusammen mit (A.16.6) folgende Differenzialgleichung für die Elektronenkonzentration in einem p⁺-Emitter ableiten:

$$\frac{kT}{e}\frac{d^2n}{dx^2} = \frac{n}{\mu_n \tau_n}$$
(A.16.7)

(A.16.7) folgt aus: $\frac{1}{e} \cdot \frac{\partial j_n}{\partial x} = \frac{n}{\tau_n}$ und $j_n = kT\mu_n \cdot \frac{\partial n}{\partial x} + (e\mu_n En)$

Die Randbedingungen sind: $n(-d - d_p) = 0$ und $n(-d) = n_1$

Die Lösung von (A.16.7) ist:

$$n(x) = \frac{n_1}{\exp(-d_p/L_n) - \exp(d_p/L_n)} \left\{ \exp(-d_p/L_n) \cdot \exp\left[\frac{-x-d}{L_n}\right] - \exp(d_p/L_n) \cdot \exp\left[\frac{x+d}{L_n}\right] \right\}$$
(A.16.8)
nit

mit

 $-d_p - d \le x \le -d$

und:

$$L_n = \sqrt{\frac{kT}{e}\mu_n \tau_n} = \sqrt{D_n \tau_n} \quad \frac{D_n}{L_n} = \sqrt{\frac{D_n}{\tau_n}} = \sqrt{\frac{kT}{e}\mu_n}$$
(A.16.9)

L_n ist die Diffusionslänge im p⁺-Emitter.

Für den Fall, dass die elektrische Feldstärke vernachlässigbar ist, folgt für den Minoritätsstrom bei x = - d zusammen mit (A.16.8):

$$j_n = eD_n \frac{dn}{dx} = e \frac{D_n}{L_n} n_1 \cdot \coth\left(\frac{d_p}{L_n}\right)$$
(A.16.10)

n₁ ist die Minoritätskonzentration an der linken Seite des pn-Überganges. Mit der Schottkynäherung für den abrupten pn-Übergang folgt:

$$n_1 N_A = n^2$$
 (A.16.11)

wobei n die Ladungsträgerkonzentration bei hoher Injektion an der rechten Seite des pn-Überganges ist. Zu den schon erwähnten Voraussetzungen bzw. Annahmen kommen somit noch 2 weitere Annahmen:

9. Die Schottkynäherung für den pn-Übergang ist gültig. Das heißt: Die Raumladungszonen haben scharfe Grenzen, und die Raumladungsdichte wird nur durch ionisierte Störstellen bestimmt. Außerhalb der Raumladungszone treten keine Raumladungen auf.

10. Im Mittelgebiet herrscht hohe Injektion: p = n » n_i

(A.16.11) in (A.16.10) eingesetzt, liefert:

Seite 121

$$j_n = e \frac{D_n}{L_n} \frac{n^2}{N_A} \cdot \coth\left(\frac{d_p}{L_n}\right)$$
(A.16.12)

Den Vergleich von (A.16.12) mit (A.16.1) liefert schließlich für h_p

$$h_{\rho} = \frac{1}{N_{A}} \frac{D_{n}}{L_{n}} \cdot \coth\left(\frac{d_{\rho}}{L_{n}}\right)$$
(A.16.13)

Für lange Emitter mit $d_p/L_n > 3$ gilt: coth(d_p/L_n) = 1.

$$\operatorname{coth}(x) = \frac{\exp(x) + \exp(-x)}{\exp(x) - \exp(-x)} = 1 \quad \text{wenn} \quad x \gg 0$$

Analog zu (A.16.13) kann für den n⁺-Emitter geschrieben werden:

$$h_n = \frac{1}{N_D} \frac{D_p}{L_p} \cdot \coth(d_n / L_p)$$
(A.16.14)

Die Anwendung der Rekombinationsparameter h_n, h_p, s_n und s_p ist also mit vielen Annahmen und Unsicherheiten verbunden. Hierzu noch einige Bemerkungen über die Rekombination, die sich zum Teil gegenseitig widersprechen:

M.S. Adler, B.A. Beatty, S. Krishna, V.A.K. Temple und M.L. Torreno jr. /73/ untersuchten die Einflussfaktoren auf den Emitterwirkungsgrad von npn-Transistoren. Sie zeigen, dass bei Emittertiefen von 4 bis 8 µm die Shockley-Read-Hall-Rekombination (SRH-Rekombination) der wichtigste Einflussfaktor ist. Bei Leistungsdioden sind die hoch dotierten Randgebiete aber meistens wesentlich breiter als 8 µm.

W.W. Sheng /74/ untersuchte ebenfalls Emitterwirkungsgrade. Nach /74/ kann der Emitter in zwei Bereiche aufgeteilt werden:

- 1. Bereich einer Dotierungskonzentration bis ca. 10¹⁹ cm⁻³. Hier ist die SRH-Rekombination dominant.
- 2. Bereich mit einer Dotierungskonzentration über 10¹⁹ cm⁻³. Hier ist die Augerrekombination dominant.

Die Emittertiefe im gezeigten Beispiel war 13 µm.

Nach dem (A.16.1) bis (A.16.4) also nicht allgemein gültig sind, werden die h-Parameter zur Simulation nicht weiter verwendet.

Die bei der Untersuchung der h-Parameter gewonnenen Erkenntnisse, insbesondere aus /71/, können aber sinnvoll bei der Auswertung der Messungen und Simulationen verwendet werden.

Im Simulationsprogramm werden die h-Parameter zu Kontrollzwecken berechnet. Hierzu werden folgende unter allen Betriebsbedingungen gültige Gleichungen verwendet:

$j_n(-d) = e h_p [n(-d) p(-d) - n_i^2(-d)]$	(A.16.15)
$j_p(+d) = e h_n [n(+d) p(+d) - n_i^2(+d)]$	(A.16.16)

Bei hoher Injektion (n = p » n_i) gehen diese Gleichungen über in (A.16.1) und (A.16.2). Im thermischen Gleichgewicht ist gewährleistet, dass links und rechts vom = Zeichen Null steht.

11.A.17 Die Spannung über eine Diode

Bei der Spannungsberechnung muss die elektrische Feldstärke integriert werden, von x = -d - d_p bis x = +d + d_n , also vom linken Metallanschluss bis zum rechten Metallanschluss. Die Metallanschlüsse sind ohmsche Kontakte mit Anreicherungsrandschichten im Silizium für die jeweiligen Majoritätsladungsträger. Durch die sehr großen Konzentrationen der Majoritätsladungsträger werden die Potentialsprünge an den ohmschen Kontakten praktisch strom- und temperaturunabhängig. Die Randkonzentrationen der Majoritätsladungsträger werden durch die Anwesenheit der Metalle fest vorgegeben. Siehe hierzu E. Spenke /1/.

Potentialsprünge treten auf im Silizium selbst, an den ohmschen Kontakten und anderen Metall-Metall-Übergängen im Diodengehäuse. Die Summe der Potentialsprünge außerhalb vom simulierten Silizium muss bei konstanter Temperatur der Diffusionsspannung im Silizium gleich sein, nur das Vorzeichen ist invertiert.

Folgende Annahmen wurden gemacht:

- 1. Die Potentialsprünge an den Silizium-Metall-Übergängen sind strom- und temperaturunabhängig.
- 2. Die elektrische Feldstärke an den Diodenanschlüssen (x = -d-d_p bzw. x = +d+d_n) ist konstant. Diese Annahme kann als Randbedingung bei der Lösung der Differenzialgleichungen dienen. Eine Änderung der Feldstärke am Rand über die Eingabedaten zeigte, dass der Einfluss hiervon auf die Durchlassspannung und auf die Ladungsträgerkonzentrationen vernachlässigbar ist.
- 3. Der Einfluss der Metall-Metall-Übergänge außerhalb vom Silizium wird vollständig vernachlässigt.
- 4. Der Spannungsabfall über die Metallteile der Diode ist vernachlässigbar.

Für die Berechnung der Spannung über die Diode wird die folgende Gleichung verwendet:

$$u_{Di} = \int_{-d-d_p}^{+d+d_n} E \, dx - U_{dif}$$
(A.17.1)

Für U_{dif} gilt bei j = 0

$$u_{dif} = \int_{-d-d_{p}}^{+d+d_{n}} E(j=0) \, dx$$
 (A.17.2.)

 U_{dif} ist die Summe der Potentialsprünge innerhalb vom simulierten Silizium. Integriert wird vom p⁺-Gebiet bis zum n⁺-Gebiet, wie in Bild A.16.1 dargestellt.

Wird (A.17.2.) in (A.17.1) eingesetzt, dann folgt:

$$u_{Di} = \int_{-d-d_p}^{+d+d_n} \left[E(j \neq 0) - E(j = 0) \right] dx$$
 (A.17.3.)

11.A.18 Die Wärmeleitung

H. Müller /75/ berechnete das transiente thermische Verhalten von Halbleiterventilen im Bereich kurzer Zeiten. Er zeigt, dass bei einseitiger Kühlung eine unendliche Zweikomponentenanordung - bestehend aus einer Si-Scheibe und einer unendlich ausgedehnten Metallschicht - bei Zeiten unter 4 ms völlig ausreichend ist, um das Temperaturverhalten zu berechnen.

Bild A.18.1 zeigt eine Dreikomponentenanordnung, die bei beidseitiger Kühlung einer Silizium-Scheibe angewendet werden muss und die auch für Zeiten über 4 ms seine Gültigkeit hat.

Bild A.18.1: Prinzipieller Aufbau der Diode mit anschließenden Metallschichten, Umgebung und Wärmewiderständen.

Für die angrenzenden Metalle in Bild A.18.1 wird oft Molybdän, Wolfram oder Kupfer verwendet.

Folgende Annahmen werden gemacht:

- 1. Das Modell kann eindimensional sein. Die Wärmeleitung findet nur in axialer Richtung statt. Randstrahlung und Wärmeleitung in radialer Richtung sind vernachlässigbar.
- 2. Die Stromdichte und damit die Wärmeerzeugung in der Diode ist gleichmäßig über die gesamte Diodenfläche verteilt.
- 3. Die spezifische Wärmekapazität c und die Dichte ρ_m von Silizium und von den Metallen sind konstant.
- 4. Der Einfluss einer gegebenenfalls vorhandenen Lötschicht ist vernachlässigbar, weil diese Schicht sehr dünn ist.
- 5. In den Metallen treten keine ohmschen Verluste auf.
- 6. M.S. Adler und H.H. Glascock geben in /76/ an, dass für Wärmeübergänge bei Druckkontakten mit einer Wärmeleitfähigkeit von 6,2 W/(Kcm²) gerechnet werden muss. Dieser Wert entspricht einem Wärmewiderstand von 0,16129 Kcm²/W für einen cm². Die Wärmekapazität eines Oberganges ist vernachlässigbar. Ebenso kann der Wärmewiderstand eines gelöteten Überganges wie z. B. zwischen einer Silizium- und einer Molybdän-Grundscheibe vernachlässigt werden. Die Wärmewiderstände werden bei den Randbedingungen in Abschnitt A.22 berücksichtigt.
- 7. Die Wärmeleitfähigkeit λ der Metalle ist konstant.
- 8. Die Wärmeleitfähigkeit λ von Silizium ist nur eine Funktion der Temperatur. Der Einfluss der Dotierung wird vernachlässigt.

Nach D.G. Arasli und M.I. Aliev /77/ ist λ bis N_D = 10¹⁸ cm⁻³ konstant und nimmt bei höheren N_D-Werten ab.

A. Goldsmith, T.E. Waterman und H.J. Hirschhorn /78/ geben für 300 K \leq T \leq 400 K an:

$$\lambda = 2440 \left(\frac{T}{K}\right)^{-4/3} J cm^{-1} K^{1} s^{-1}$$
(A.18.1)

Dieser Wert ist nach /81/ zu niedrig.

9. Am Anfang des Rechenlaufes herrscht ein stationärer Zustand, und die Anfangstemperatur T₀ ist ortsunabhängig.

Die Umgebungstemperatur bleibt während eines Rechenlaufes konstant auf den Wert T₀.

Nach H. Müller /75/ wird die Wärmeleitung durch folgende partielle Differenzialgleichung beschrieben:

$$\rho_m c \frac{\delta T}{\delta t} = \frac{\delta}{\delta x} \left[\lambda \frac{\delta T}{\delta x} \right] + Q \tag{A.18.2}$$

$$\frac{\delta}{\delta x} = \text{div}; \frac{\delta T}{\delta x} = \text{grad } T$$

Hierin ist Q die Verlustleistung pro Volumeneinheit: die Verlustleistungsdichte. Für $\rho_m c$ und λ gelten die Werte der Tabelle (A.18.1). Alle Werte, außer der λ -Gleichung für Si, gelten für T = 350 K.

Material	$\frac{\lambda}{Jcm^{-1}K^{-1}s^{-1}}$	$rac{ ho_m c}{J \mathcal{K}^{-1} c m^{-3}}$
Si	$1,56\left(\frac{T}{300K}\right)^{-1}$	1,770
Мо	1,350	2,703
Ag	4,189	2,478
W	1,523	2,625
AI	2,198	2,550
Cu	3,981	3,513

<u>Tabelle A.18.1</u>: Materialkonstanten nach /78/ für die Wärmeleitgleichung. Die λ -Gleichung folgt aus /81/.

In den Metallen wird keine Wärme erzeugt. Außerdem ist dort λ konstant. Hiermit vereinfacht sich die Gleichung (A.18.2) wie folgt:

$$\rho_m c \frac{\delta T}{\delta t} = \lambda \frac{\delta^2 T}{\delta x^2}$$
(A.18.3)

Die Berechnung der Verlustleistungsdichte im Silizium ist bis jetzt nicht eindeutig geklärt. Die verwendeten Formeln sind von Literaturquelle zu Literaturstelle verschieden. In dieser Arbeit wurde aufgesetzt auf die von M.S. Adler /79/ veröffentlichte Formel. Diese wurde derart modifiziert, dass das Integral über die Verlustleistungsdichte im stationären Fall gleich dem Produkt U_F I_F ist.

M.S. Adler /79/ gibt für die Verlustleistungsdichte Q folgende Gleichung an:

$$Q = \frac{\delta}{\delta x} (j_n \cdot E_c) + \frac{\delta}{\delta x} (j_p \cdot E_v)$$
(A.18.4)

Für Halbleiter mit konstantem Bandabstand gilt für die elektrische Feldstärke E:

$$\frac{\delta}{\delta x} E_c = \frac{\delta}{\delta x} E_v = E \tag{A.18.5}$$

Hiermit folgt für Q:

 $Q = (j_n + j_p) E + \frac{\delta j_n}{\delta x} \cdot E_c + \frac{\delta j_p}{\delta x} \cdot E_v$ (A.18.6)

Im stationären Fall gilt:

 $j_n + j_p = j = konstant$ (A.18.7)

und deshalb:

$$\frac{\delta j_n}{\delta x} = -\frac{\delta j_p}{\delta x}$$
(A.18.8)

Hiermit und mit $E_c - E_v = E_g$ folgt aus (A.18.6) schließlich:

$$Q = j \cdot E + \frac{\delta j_n}{\delta x} \cdot E_g$$
(A.18.9)

Im stationären Fall folgt aus (A.2.2):

$$\frac{\delta j_n}{\delta x} = \mathbf{e}[\Sigma \mathbf{R}_n - \mathbf{G}_l + \mathbf{R}_A] \tag{A.18.10}$$

Nach Adler wird die Verlustleistungsdichte somit:

$$Q = j \cdot E + e[\Sigma R_n - G_l + R_A] \cdot E_g$$
(A.18.11)

Jetzt werden die einzelnen Beiträge zur Verlustleistungsdichte Q im hier verwendeten Modell erläutert.

1. j.E ist die Verlustleistungsdichte, die durch den Ladungsträgertransport in einem elektrischen Feld verursacht wird.

Die Stromdichte j durch die Diode wird durch (A.2.6) angegeben. Sie lautet:

$$j = j_p + j_n + \varepsilon_0 \varepsilon_r \frac{\delta E}{\delta t}$$
(A.18.12)

Hierin ist $\varepsilon_0 \varepsilon_r \frac{\delta E}{\delta t}$ der elektrische Verschiebungsstrom. Dieser Verschiebungsstrom lädt die Sperrschichtkapazität auf und darf bei der Verlustleistungsberechnung nicht berücksichtigt werden. Für die Verlustleistungsdichte j E wird deshalb folgende Gleichung verwendet:

$$Q = (j_n + j_p) E(j \neq 0) = j_n E + j_p E$$
(A.18)

2. Die Rekombination bildet die zweite Komponente bei der Verlustleistungsdichte nach Gleichung (A.18.11). Bei der Rekombination geben die rekombinierten Löcher und Elektronen Energie am Gitter ab. Hierdurch steigen die Verlustleistungsdichte und die Temperatur an. Bei der Generation von Löchern und Elektronen wird dem Gitter dagegen Energie entzogen und kühlt somit ab. (A.18.11) gilt für den stationären Fall mit $R_n = R_p$. Im dynamischen Fall gilt:

 $R_n \neq R_p$. Zur Ableitung der Gleichungen für den dynamischen Fall muss zurückgegriffen werden auf die Rekombinationstheorie in Abschnitt A.7 und A.8.

In Bild A.7.1 ist das Energieniveau des Donators E_D. Die Rekombination der Elektronen R_n ist mit dem Übergang von E_C nach E_D gekoppelt. Die Rekombination der Löcher R_P ist mit dem Übergang von E_V nach E_D gekoppelt. Die gesamte Verlustleistungsdichte wird hiermit:

$$Q = e R_n (E_c - E_D) + e R_p (E_D - E_V)$$
(A.18.14)

Im stationären Fall folgt hieraus mit $R_n = R_p$ und $E_g = E_c - E_v$:

$$Q = e R_n E_g$$
 (A.18.15)

was im Einklang mit (A.18.11) ist. Analog folgt nach Bild A.7.2 für die Akzeptoren:

$$Q = e R_n (E_c - E_A) + e R_p (E_A - E_V)$$

Für das Rekombinationsmodell aus Bild A.8.1 können ähnliche Gleichungen aufgestellt werden. Für die Stoßionisation und für die Augerrekombination gilt:

 $Q = e (-G_1 + R_A) E_g$

(A.18.17)

(A.18.16)

3.13)

3. Die Oberflächenrekombination an den Metall-Silizium-Übergängen liefert nur dort einen Beitrag zur Verlustleistung. Weil hier immer mit den stationären Gleichungen gerechnet wird, lauten die Gleichungen in Analogie zu (A.18.15):

Für den p⁺-Emitter:

$$q = e R_0 E_g = j_n E_g$$
 (A.18.18)

und für den n⁺-Emitter:

$$q = e R_0 E_g = j_p E_g$$
 (A.18.19)

Hierbei wurde die Gleichung (A.11.4) verwendet.

4. Zusätzlich muss wegen der Potentialsprünge für den linken Metall-p⁺-Silizium-Übergang der Beitrag

 $q = -j (E_F - E_V)$ (A.18.20) und für den rechten Metall-n⁺-Silizium-Übergang der Beitrag

$$q = -j (E_c - E_F)$$
 (A.18.21)

berücksichtigt werden. Beide Kontakte kühlen bei Vorwärtsstrom ab, wenn $E_c - E_F > 0$ bzw. $E_F - E_V > 0$ und die oben genannten Beiträge, absolut gesehen, größer als die restlichen Beiträge an den Kontakten sind.

5. Als Letztes muss die Verlustleistungsdichte bei Halbleiter mit nicht konstantem Bandabstand mit folgendem Term ergänzt werden: (Korrektur in Einklang mit den effektiven Feldern in Abschnitt A.21)

$$Q = j_{p} \frac{d}{dx} \Delta E_{v} - j_{n} \frac{d}{dx} \Delta E_{c}$$
(A.18.22)

Die Änderung der Bandkanten wurde in Abschnitt A.4 erläutert. Das Vorzeichen des zweiten Teiles von Gleichung (A.18.22) ist nicht in Einklang mit der Adler-Gleichung (A.18.4). Ebenso fehlen die Beiträge der Kontakte in (A.18.4).

Die gesamte Verlustleistung P_{Di} im Silizium wird somit durch die Addition folgender Komponenten gefunden:

1.

 $\begin{cases} (j_n + j_p)E \\ eR_n(E_c - E_p) + eR_p(E_p - E_v) & \text{für jedes Donatorniveau} \\ eR_n(E_c - E_A) + eR_p(E_A - E_v) & \text{für jedes Akzeptorniveau} \\ e(-G_l + R_A)E_g \\ j_p \frac{d}{dx}\Delta E_v - j_n \frac{d}{dx}\Delta E_c \end{cases}$ (A.18.23)

Diese Komponenten müssen über das Volumen integriert werden.

2.

$$j_n E_g - j(E_F - E_V) \text{ für den p}^* - \text{ Kontakt} j_p E_g - j(E_C - E_F) \text{ für den n}^* - \text{ Kontakt}$$
 (A.18.24)

Diese Komponenten müssen über die Fläche integriert werden.

Das Ergebnis dieser Addierung und Integration ist im stationären Fall gleich dem Produkt UFIF.

11.A.19 Die Beschaltung einer Diode

In diesem Abschnitt wird eine Diode mit Beschaltung beschrieben. Hierbei wird ausschließlich auf das Abschaltverhalten der Diode eingegangen. Das Abschaltverhalten wird durch die Vorgeschichte mitbestimmt, die hier nur aus einem konstanten Vorwärtsstrom besteht. Der Diodenstrom beim Abschalten wird schematisch in Bild A.19.1 dargestellt. Der Abschaltvorgang beginnt bei t = t_1 .

Bild A.19.1: Der Diodenstrom beim Abschaltvorgang

In Bild A.19.2 wird die Rückstromspitze des Bildes A.19.1 noch einmal genauer dargestellt.

Zum Zeitpunkt t₂ ändert sich die Polarität des Diodenstromes. Ab Zeitpunkt t₃ wird die Sperrspannung an der Diode aufgebaut.

Zeitpunkt t₃ ist leicht erkennbar, weil sich dort die Stromsteilheit di/dt ändert.

Zum Zeitpunkt t₄ gilt: di/dt = 0. Die Spannung über die Reiheninduktivität L ist Null, wenn der Einfluss der RC-Beschaltung zu diesem Zeitpunkt vernachlässigbar ist. An der Diode steht dann die Batteriespannung U_D an. Zwischen t₄ und t₅ wird ein Überschwingen der Sperrspannung auftreten. Zum Zeitpunkt t₅ ist der stationäre Sperrstrom erreicht.

Mit der Schaltung des Bildes A.19.3 kann der Stromverlauf des Bildes A.19.1 erzeugt werden $(L_{st} = 0)$.

Bild A.19.3: Die Diode mit Beschaltung

Die Diodenbeschaltung in Bild A.19.3 besteht aus einer RC-Beschaltung und einem Stufenkern. In der RC-Beschaltung ist eine parasitäre Induktivität L₂ vorgesehen. Anstatt eines idealen Schalters, der zum Zeitpunkt t₁ geschlossen wird, kann auch ein nicht idealer Schalter vereinfacht nachgebildet werden. Hierzu ist ein steuerbarer Widerstand R_{Sch} in Reihe mit dem Schalter vorgesehen. Der Widerstandsverlauf als Funktion der Zeit kann beliebig vorgegeben werden.

Die Stromquelle liefert den Vorwärtsstrom I_F bis zum Zeitpunkt t₁. Bis zum Zeitpunkt t₁ gilt weiter:

$u_{c} = U_{Di}$ und $u_{CPAR} = U_{Di}$	(A.19.1)
i _c = 0	(A.19.2)
$i_{Di} = i_{L1} = i_L = i_{LSt} = I_F$	(A.19.3)
$u_{L1} = u_{LSt} = u_{L2} = 0$	(A.19.4)

Zum Zeitpunkt t₁ wird der Schalter geschlossen. Dann steht die Spannung U_D an der Reihenschaltung Diode – L_{St} - L_1 - R_{Sch} an. Es gilt somit:

$u_{Di} + u_{L1} + u_{LSt} + u_{RSch} = - U_D$	(A.19.5)
--	----------

Für das mathematische Modell sind jetzt folgende Zustandsgrößen zu berücksichtigen: $i_{L1} = i_L$, i_{LSt} , $i_{L2} = i_C$, u_C , u_{CPAR} und u_{Di}

 u_{Di} wird mit den Gleichungen der vorhergehenden Abschnitte berechnet.

Die Anfangsbedingungen von i_{L1} , i_{LSt} , i_{C} , u_{C} und u_{CPAR} werden durch (A.19.1) bis (A.19.3) vorgegeben. Zur Lösung der Differenzialgleichungen von i_{L1} , i_{LSt} , i_{C} , u_{C} bzw. u_{CPAR} reicht es, wenn hier nur die Zeitableitungen di_{L1} /dt, di_{LSt}/dt, di_{C}/dt, du_{C}/dt und d u_{CPAR} /dt berechnet werden:

$$\frac{di_{L1}}{dt} = \frac{u_{L1}}{L_1} = \frac{R_{L1PAR}(i_{LSt} - i_{L1})}{L_1}$$
(A.19.6a)

$$\frac{di_{LSt}}{dt} = -\frac{U_D + u_{Di} + u_{L1} + u_{RSch}}{L_{St}} = -\frac{U_D + u_{Di} + R_{L1PAR}(i_{LSt} - i_{L1}) + R_{Sch}(i_{LSt} - I_F)}{L_{St}}$$
(A.19.6b)

$$\frac{di_c}{dt} = \frac{u_{Di} - i_c R - u_c}{L_2} \quad \text{und} \quad \frac{du_c}{dt} = \frac{i_c}{C} \quad \text{für die RLC-Beschaltung}$$
(A.19.7)

und

$$\frac{du_{Di}}{dt} = \frac{i_{CPAR}}{C_{par}} \quad \text{für den Parallelkondensator.}$$
(A.19.8)

 i_c und u_c werden aus (A.19.7) berechnet. i_{L1} und i_{LSt} aus (A.19.6a) und (A.19.6b). Die Ableitungen von i_{L1}, i_{LSt}, i_C, u_C und u_{Di} werden dabei mit (A.23.10) berechnet. Für den Diodenstrom gilt ab $t = t_1$:

$$i_{Di} = i_L - i_C$$
 (A.19.9)

Die Stromdichte j in der Diode ist:

$$j = \frac{i_{Di}}{A} \tag{A.19.10}$$

j wird wiederum in den Gleichungen der vorhergehenden Abschnitte benötigt. Die Induktivität Lst ist stromabhängig. Um das mathematische Modell nicht zu überlasten, wurde der ϕ - i_{LSt}-

Verlauf des Bildes A.19.4 gewählt.

Bild A.19.4: ϕ - I_L - Verlauf des Stufenkernes L_{St}

Beim Abschalten der Diode wird die Hystereseschleife des Bildes A.19.4 in Pfeilrichtung durchlaufen. Aus Bild A.19.4 geht hervor, dass L_{st} linear ist im Bereich:

$$I_{St} - I_K \le I_{LSt} \le I_{St} - I_K$$

Hier gilt:

(A.19.11 $L_{St} = L_0$

Im nichtlinearen Bereich gilt:

$$\varphi = \varphi_s - \frac{L_0 \cdot I_{St}^2}{I_{LSt} + I_K}$$
(A.19.12)

wobei

$$\frac{\varphi_{\rm S}}{2} = L_0 \cdot I_{\rm St} \tag{A.19.13}$$

Aus (A.19.12) folgt für $\frac{d \varphi}{dt}$ des Stufenkernes im nichtlinearen Bereich:

))

Seite 130

$$\frac{d \varphi}{dt} = \frac{L_0 \cdot I_{St}^2}{(I_{LSt} + I_K)^2} \cdot \frac{dI_{LSt}}{dt}$$
(A.19.14)

Die Induktivität im gesamten Strombereich wird in Bild A.19.5 dargestellt.

Bild A.19.5: Induktivität Lst als Funktion des Stromes

Bei $I_{LSt} > I_{St} - I_K$ und $I_{LSt} < -I_{St} - I_K$ gilt:

$$L_{St} = L_0 \left[\frac{I_{St}}{I_{LSt} + I_K} \right]^2$$
(A.19.15)

Die Gleichungen (A.19.11) bzw. (A.19.15) müssen je nach Stromstärke I_{Lst} in (A.19.6) eingesetzt werden.

Weil L_{st} bei großen Strömen nach null geht, muss ein linearer Anteil des Stufenkernes bei L₁ mit berücksichtigt werden.

Zum Schluss kann jetzt noch anhand von Bild A.17.2 die Speicherladung Q_{rr} der Diode definiert werden. Nachdem zum Zeitpunkt t₅ wieder der stationäre Zustand erreicht wird, wird folgende Formel im Simulationsprogramm für Q_{rr} verwendet:

$$Q_{rr} = \int_{t_2}^{t_5} -i_{Di}dt$$
 (A.19.16)

Für eine Berechnung der Verluste sind die Verlustarbeit W_{Di} in der Diode und die Verlustarbeit W_R im Beschaltungswiderstand R von Bedeutung. Hierfür folgt:

$W_{Di} = \int_{0}^{t} P_{Di} dt$	(A.19.17)
$W_R = \int_{0}^{t} Ri_c^2 dt$	(A.19.18)

11.A.20 Die Ortsdiskretisierung und die x-Ableitungen

Nach Bild A.15.1 hat die Siliziumscheibe eine Dicke von: $d_p + 2d + d_n$. Diese Strecke wird in n -1 Teilstücke aufgeteilt, die insgesamt n Hauptgitterpunkte miteinander verbinden (Bild A.20.1). Die Hauptgitterpunkte werden durch einen Kreis gekennzeichnet. Genau in der Mitte zwischen zwei Hauptgitterpunkten liegt jeweils ein Zwischengitterpunkt. Diese Zwischengitterpunkte werden durch ein Kreuz gekennzeichnet. Das Diskretisierungsschema des Bildes A.20.1 wird auch von D.L. Scharfetter und H.K. Gummel /17/ verwendet.

Dieses Diskretisierungsschema wurde gewählt, um bei den Ortsableitungen eine Genauigkeit zweiter Ordnung zu erreichen.

Die Funktionswerte in Bild A.20.2 werden hierbei nur für die Hauptgitterpunkte und die x-Ableitungen nur für die Zwischengitterpunkte berechnet.

Bild A.20.2: Ableitung einer Funktion am Zwischengitterpunkt

Ein zweiter Grund für dieses Diskretisierungsschema sind die Kontinuitätsgleichungen.

Bild A.20.3: Der geschlossene Raum bei den Kontinuitätsgleichungen

Bei den Kontinuitätsgleichungen (A.2.1) und A.2.2) wird die Änderung der Ladungsträgerkonzentration in einem geschlossenen Raum berechnet. Diese Änderung der Konzentration wird bestimmt durch die Teilchenstromdichte j_i am Zwischengitterpunkt i und durch Teilchenstromdichte j_{i+1} , am Zwischengitterpunkt i+1.

Innerhalb des geschlossenen Raumes werden weiter noch Ladungsträger-Rekombination und Generation auftreten.

Gleiche Verhältnisse treten auch bei der Wärmeleitgleichung (A.18.2) auf. Innerhalb des geschlossenen Raumes kann Wärme erzeugt werden. Die Temperatur im geschlossenen Raum wird aber auch durch die Wärmeströme an den Zwischengitterpunkten beeinflusst.

Folgende Größen werden nur für die Hauptgitterpunkte berechnet: p, N_D , N_A , N_R , x, T und μ_0 (Beweglichkeit ohne Einfluss der elektrischen Feldstärke).

Für die Zwischengitterpunkte wird nur berechnet: j_p, j_n, E und $\lambda \cdot \frac{\delta T}{\delta x}$ (Wärmestrom).

Dieses Schema passt sehr gut für die meisten Beziehungen in den Basisgleichungen (A.2.1) bis (A.2.6). Treten direkte Verknüpfungen zwischen Größen von Hauptgitterpunkten und Zwischengitterpunkten auf, wie z. B. zwischen j_n und T in (A.2.5), dann wird j_n trotzdem für den Zwischengitterpunkt berechnet. Für T wird dann der Mittelwert von den zwei benachbarten Hauptgitterpunkten eingesetzt.

Die Teilstücke der Siliziumscheibe können unterschiedlich lang sein. Die Randmetalle, die an der Siliziumscheibe anschließen (Bild A.18.1), werden aus programmtechnischen Gründen in n gleich lange Teilstücke mit der Länge dx_m geteilt. Diese Diskretisierung wird in Bild A.20.4 gezeigt. Die Randbedingungen der Temperatur werden in Abschnitt A.22 erläutert. Die Zwischengitterpunkte wurden nicht eingetragen. Die Kästchen beziehen sich auf den Integrationsweg des Bildes A.20.3.

── = Der geschlossene Raum bei der Kontinuitätsgleichung nach Bild A.20.3.

o = Hauptgitterpunkt

Bild A.20.4: Diskretisierung im Silizium und in den anschließenden Metallen zur Temperaturberechnung

Anhand des oben genannten Diskretisierungsschemas können jetzt die x-Ableitungen aufgestellt werden.

Mit den hieraus folgenden Gleichungen können partielle Differenzialgleichungen umgesetzt werden in Systeme gekoppelter, normaler Differenzialgleichungen, die nur noch nach t integriert werden müssen.

Folgende x-Ableitungen werden benötigt: $\frac{\delta j_p}{\delta x}$, $\frac{\delta j_n}{\delta x}$, $\frac{\delta}{\delta x} \varepsilon_0 \varepsilon_r E$ und $\frac{\delta T}{\delta x}$

Sie kommen vor in den Gleichungen (A.2.1) bis (A.2.3) bzw. in (A.18.4). j_n , j_p und E sind für die Zwischengitterpunkte definiert. Deshalb gelten die x-Ableitungen für die Hauptgitterpunkte.

Es gilt für Hauptgitterpunkt i:

$$\left(\frac{\delta j_p}{\delta x}\right)_i = \frac{j_{p\,i+1} - j_{p\,i}}{\frac{dx_i}{2} + \frac{dx_{i+1}}{2}} \tag{A.20.1}$$

 $\frac{dx_i}{2} + \frac{dx_{i+1}}{2}$ ist der Abstand zwischen den Zwischengitterpunkten i und i+1 (Bild A.20.3).

Die Gleichung (A.20.1) gilt in analoger Form auch für j_n und $\epsilon_0 \epsilon_r E$.

T ist für die Hauptgitterpunkte definiert. Deshalb gelten die x-Ableitungen für die Zwischengitterpunkte.

Es gilt für Zwischengitterpunkt i + 1:

$$\left(\frac{\delta T}{\delta x}\right)_{i} = \frac{T_{i+1} - T_{i}}{dx_{i+1}}$$
(A.20.2)

In der Gleichung (A.18.2) wird zweimal nach x differenziert. Für Hauptgitterpunkt i folgt:

$$\rho_m c \left(\frac{\delta T}{\delta x}\right)_i = \frac{\left(\lambda \cdot \frac{\delta T}{\delta x}\right)_{i+1} - \left(\lambda \cdot \frac{\delta T}{\delta x}\right)_i}{\frac{dx_i}{2} + \frac{dx_{i+1}}{2}} + Q$$
(A.20.3)

Hierin ist $\lambda \cdot \frac{\delta T}{\delta x}$ für die Zwischengitterpunkte definiert und kann mit (A.20.2) ausgeschrieben werden. λ ist eine Funktion von T: λ = f(T). Da T aber für die Hauptgitterpunkte definiert ist, muss λ als Funktion der mittleren Temperatur zwischen zwei Hauptgitterpunkten dargestellt werden.

Für λ am Zwischengitterpunkt i + 1 folgt:

$$\lambda_{i+1} = f\left(\frac{T_i + T_{i+1}}{2}\right) \tag{A.20.4}$$

In den Metallen ist λ konstant. Auch sind die Abstände zwischen den Hauptgitterpunkten dx_m, konstant. Weiterhin gilt: Q = 0.

Hiermit folgt aus (A.20.3) für die Metalle:

$$\left(\frac{\delta T}{\delta x}\right)_{i} = \frac{\lambda}{\rho_{m}c} \cdot \frac{T_{i+1} - 2T_{i} + T_{i-1}}{dx_{m}^{2}}$$
(A.20.5)

11.A.21 Die Stromberechnung nach dem Scharfetter-Gummel-Algorithmus

D.L. Scharfetter und H.K. Gummel geben in /17/ an, dass numerische Instabilitäten bei der Lösung der Gleichungen auftreten, wenn:

1. das Potential zwischen zwei Gitterpunkten größer als $2\frac{kT}{e}$ wird

und

2. für n bzw. p im Feldstromanteil der Stromgleichungen der Mittelwert der benachbarten Konzentrationen genommen wird.

Die Stromgleichungen sind deshalb als Differenzialgleichungen in n bzw. p zu betrachten mit konstanten Koeffizienten im jeweiligen Bereich zwischen zwei Hauptgitterpunkten. Zur Stromberechnung Wird nun die Lösung der Differenzialgleichung benutzt. Sie lautet nach /17/:

$$j_{pi} = \mu_{pi} \cdot \frac{kT}{dx_i} \left[\frac{p_{i-1} \cdot z}{1 - \exp(-z)} + \frac{p_i \cdot z}{1 - \exp(z)} \right]$$

$$j_{ni} = \mu_{ni} \cdot \frac{kT}{dx_i} \left[\frac{n_i \cdot z}{1 - \exp(-z)} + \frac{n_{i-1} \cdot z}{1 - \exp(z)} \right]$$
(A.21.2)

mit

$$z = E_i \cdot dx_i \cdot \frac{e}{kT}$$
(A.21.3)

 μ_{Pi} und μ_{ni} sind abhängig von den Mittelwerten der μ -Werte der benachbarten Hauptgitterpunkte und von der elektrischen Feldstärke E_i.

Bei Anwendung der Gleichungen (A.21.1) bis (A.21.3) treten zwei Schwierigkeiten auf. Als Erstes muss im thermischen Gleichgewicht, auch beim Auftreten einer örtlichen Verengung des Bandabstandes, immer gelten: $j_p = j_n = 0$. Um dieses zu erreichen, werden für den Löcher- und Elektronenstrom unterschiedliche effektive Felder eingeführt. Diese Felder sind:

$$E_{pi} = E_i - \Delta E_{pi} \quad \left(= E_i + \frac{d}{dx} \Delta E_v \right)$$

$$E_{ni} = E_i + \Delta E_{ni} \quad \left(= E_i - \frac{d}{dx} \Delta E_c \right)$$
(A.21.4)
(A.21.5)

Aus (A.20.1) bis (A.20.3) kann mit $j_p = j_n = 0$ und pn = n_{ie^2} als Bedingung für ΔE_p und ΔE_n , abgeleitet werden:

$$\Delta E_{\rho i} = \frac{\bar{T}}{dx_{i}} \left\{ \frac{\Delta E_{V i-1}}{T_{i-1}} - \frac{\Delta E_{V i}}{T_{i}} \right\}$$
(A.20.6)

$$\Delta E_{ni} = \frac{\overline{T}}{dx_i} \left\{ \frac{\Delta E_{Ci-1}}{T_{i-1}} - \frac{\Delta E_{Ci}}{T_i} \right\}$$
(A.20.7)

wobei:

$$\bar{T} = \frac{1}{2} (T_i + T_{i-1})$$
(A.20.8)

 ΔE_{c} und ΔE_{v} werden durch (A.4.8) bzw. (A.4.10) und (A.4.11) vorgegeben. In den Programmen OSSI und MEDUSA /14/ gilt wegen der konstanten Temperatur und wegen $\Delta E_{c} = \Delta E_{v} = \frac{1}{2} \Delta E_{g}$:

$$\Delta E_{pi} = \Delta E_{ni} = \frac{1}{2} \cdot \frac{\Delta E_{gi-1} - \Delta E_{gi}}{dx_i}$$
(A.20.9)

Weiter müssen im hier vorliegendem Simulationsprogramm zusätzlich noch die Temperaturgradienten aus (A.2.4) und (A.2.5) bei der Berechnung der effektiven Felder mit einbezogen werden. Es folgt somit:

$E_{pi} = E_{i} - \Delta E_{pi} - \Delta E_{Ti}$	(A.20.10)
$E_{ni} = E_{i} + \Delta E_{ni} + \Delta E_{Ti}$	(A.20.11)

wobei:

$$\Delta E_{\tau_i} = \frac{1}{2} \frac{k}{e} \frac{T_i - T_{i-1}}{dx_i}$$

(A.20.12)

(A.22.2)

11.A.22 Die Randbedingungen

Randbedingungen werden für die Größen benötigt, die am Rand durch äußere Bedingungen beeinflusst werden können. Die Größen sind: j_n, j_p, E und T. Alle anderen Größen am Rand werden nur durch die örtlichen Gegebenheiten beeinflusst. Bei der Temperatur werden die Randbedingungen für die Metall-Silizium- und Metall-Umgebungs-Übergänge benötigt.

Wie in Annahme 6, Abschnitt A.18, angegeben wurde, müssen für diese Übergänge ggf. Wärmewiderstände berücksichtigt werden. Dies geschieht bei der Berechnung der Wärmeströme an diesen Übergängen, indem die Wärmeleitfähigkeit entsprechend herabgesetzt wird. Nach Annahme 9 in Abschnitt A.18 bleibt die Umgebungstemperatur konstant auf dem Wert T_0 .

Nach Annahme 2 in Abschnitt A.17 ist die elektrische Feldstärke am Metall-Silizium-Übergang konstant.

Die berechneten Durchlassspannungen ändern sich nur um einige mV, wenn als Randbedingung $\frac{\delta E}{\delta x} = 0$

eingegeben wird. Die Wahl dieser Randbedingung ist unkritisch, weil in den hoch dotierten Gebieten annähernd Neutralität herrscht und die Verhältnisse dort nur wenig von der Randfeldstärke beeinflusst werden. Diese Randbedingung gilt für alle Betriebsbedingungen.

Unter Berücksichtigung der Oberflächenrekombination R₀ aus Abschnitt A.11 wurde folgende Lösung für die Metall-Silizium-Übergänge gewählt:

links am p⁺-Silizium: jո = e R₀ und j₂ = j - jո	(A.22.1)
---	----------

rechts am n⁺-Silizium: $j_n = j - j_p$ und $j_p = e R_0$

Diese Randbedingung gilt für den stationären Zustand und in der Dynamik. Im thermischen Gleichgewicht wird diese Randbedingung zu:

 $j_n = j_p = j = 0$ (A.22.3)

11.A.23 Der Lösungsalgorithmus

Die Lösung der Halbleitergleichungen kann in drei Bereiche unterteilt werden:

- thermisches Gleichgewicht
- stationärer Zustand und
- Dynamik

Im <u>thermischen Gleichgewicht</u> werden, bei j = 0 die Ladungsträgerkonzentrationen und die elektrische Feldstärke für folgende Ziele benötigt:

1. Für die Anfangsbedingungen der Differenzialgleichungen.

- 2. Für die Berechnung der Diffusions- und Diodenspannung mit den Gleichungen (A.17.2) und (A.17.3).
- 3. Für die Berechnung der Ladungsträgerlebensdauer τ_p und τ_n im stationären Zustand mit den Gleichungen (A.8.28) und (A.8.29).

 τ_n und τ_p werden im mathematischen Modell weiter nicht benötigt und deshalb nur zu Kontrollzwecken berechnet.

 τ_n bzw. τ_p unterliegen im dynamischen Fall großen Schwankungen, besonders wenn n \approx n₀ bzw. p \approx p₀. Diese Schwankungen betragen je nach Betriebszustand der Diode bis zu 6 Zehnerpotenzen. Eine zahlenmäßige Angabe der Ladungsträgerlebensdauer in der Diode ist deshalb nur in Verbindung mit einer Angabe des Betriebszustandes (z. B. hoher Injektion, stationär) sinnvoll.

Für die Berechnung beim thermischen Gleichgewicht werden folgende Gleichungen benötigt:

1. Für die Hauptgitterpunkte 1 bis n:

$$\frac{d}{dx}\varepsilon_{0}\varepsilon_{r}E=e\left(p-n+N_{D}^{*}-N_{A}^{*}+N_{R}^{*}-N_{R}^{*}\right)$$
(A.23.1)

Hierin werden N_{D}^{+} , N_{A}^{-} , N_{R}^{+} und N_{R}^{-} durch Abschnitt A.7 bzw. A.8 vorgegeben. Weil thermisches Gleichgewicht herrscht, gilt für p nach (A.3.12):

$$p = \frac{n_i^2}{n} \tag{A.23.2}$$

2. Für die Zwischengitterpunkte 2 bis n:

$$E_{i} = \frac{k \bar{T}}{e \cdot dx_{i}} \cdot \ln\left(\frac{n_{i-1}}{n_{i}}\right)$$
(A.23.3)

Diese Gleichung folgt aus (A.21.2) mit $j_n = 0$. Eine äquivalente Gleichung für die Löcher wird nicht benötigt, weil die Löcher und Elektronen durch (A.23.2) miteinander gekoppelt sind.

Die Gleichungen (A.23.1) und (A.23.3) werden mit Newton-Raphson-Verfahren für alle n_i und E_i gelöst. Aus den Werten von n folgen dann anschließend die Werte für p, N^+_D , N^-_A , N^+_R und N^-_R . Randbedingungen sind nur für E erforderlich. Sie wurden in Abschnitt A.22 erläutert.

Der <u>stationäre Zustand</u> in der Diode tritt bei Berechnung des Anfangszustandes bei $j \neq 0$ auf. Hierbei wird ausgegangen von den Basisgleichungen (A.2.1) bis (A.2.6). Die Zeitableitungen werden zu Null. Aus (A.2.6) folgt:

 $j = j_p + j_n$ (A.23.4)

Weil j ortsunabhängig ist, folgt hieraus:

$$\frac{\delta f_p}{\delta x} = -\frac{\delta f_n}{\delta x}$$
(A.23.5)

Hiermit folgt aus den Kontinuitätsgleichungen und den Gleichungen für die Rekombinationszentren:

$$\mathsf{R}_{\mathsf{p}} = \mathsf{R}_{\mathsf{n}} \tag{A.23.6}$$

Bei der Berechnung des Anfangszustandes braucht deshalb nur eine Kontinuitätsgleichung verwendet zu werden:

$$\frac{1}{e} \cdot \frac{\delta j_n}{\delta x} = \sum R_n - G_l + R_A \tag{A.23.7}$$

Weiter wird die Poisson-Gleichung benötigt:

Seite 137

$$\frac{d}{dx}\varepsilon_{0}\varepsilon_{r}E = e\left(p - n + N_{D}^{*} - N_{A}^{*} + N_{R}^{*} - N_{R}^{*}\right)$$
(A.23.8)

und die Gleichungen (A.21.1) bis (A.21.3) für die Löcher und Elektronen-Stromdichten.

Es gilt: $\frac{\delta T}{\delta x} = 0$. G_I und R_A werden in Abschnitt A.12 bzw. A.10 angegeben. N⁺_D, N⁻_A, N⁺_R und N⁻_R werden in Abschnitt A.7 bzw. A.8 angegeben.

p, n, j_n und E können aus den oben stehenden Gleichungen für jeden Diskretisierungspunkt der Diode mit dem Newton-Raphson-Verfahren gelöst werden. j_p folgt aus (A.23.4). Die Randbedingungen wurden in Abschnitt A.22 angegeben.

Bei der Zeitintegration wird ausgegangen von den Basisgleichungen (A.2.1) bis (A.2.6). Weiter werden die Differenzialgleichungen (A.8.7) bis (A.8.10) für die Besetzungen der Dotierungen benötigt. Die Temperatur im Silizium und in den Randmetallen wird durch (A.18.4) bzw. (A.18.5) vorgegeben. Schließlich werden für den Strom durch Drossel L₁ + L_{st} und für die Spannung über und Strom durch den Kondensator C noch (A.19.6) bis (A.21.3) verwendet. Anstatt (A.2.4) und (A.2.5) werden zur Stromdichteberechnung die Gleichungen (A.21.1) bis (A.21.3) verwendet. Die Poisson-Gleichung (A.2.3) wird nicht benötigt. Die Gleichungen werden mit dem Newton-Raphson-Verfahren gelöst. Die Randbedingungen wurden wiederum in Abschnitt A.22 angegeben.

Für den Verlauf einer Zustandsgröße F als Funktion der Zeit wird näherungsweise für $t_0 \le t \le t_2$ gelten:

$$F = c_0 + c_1 t + c_2 t^2$$

(A.23.9)

Diese Funktion wird in Bild A.23.1 dargestellt.

Bild A.23.1: F als Funktion von t

Für den Punkt t = t₂ kann jetzt folgende Gleichung für die Zeitableitung aufgestellt werden:

$$\left(\frac{dF}{dt}\right)_{2} = \frac{F_{0} \cdot b^{2} - F_{1}(a+b)^{2} + F_{2}(a^{2}+2ab)}{a^{2}b+ab^{2}}$$
(A.23.10)

Hierin ist:

 $a = t_1 - t_0$ (A.23.11)

und

b = t₂ - t₁

(A.23.12)

Die Gleichung (A.23.10) für die Zeitableitung wird in (A.2.1), (A.2.2), (A.2.6), (A.18.4) und (A.18.5) eingesetzt. Es entsteht ein Gleichungssystem, woraus jeweils F_2 gelöst werden kann.

11.A.24 Bezeichnungen und Symbole

а	Fitparameter in (A 13 5) oder Zeitschritt nach (A 23 11)
a a.	Rekombinationsparameter der Augerrekombination
a.	Rekombinationsparameter der Augerrekombination
A	effektive Diodenfläche oder
/	Variable in (A 8 16) bis (A 8 20) oder:
	Konstante in ($A = 1 = 2$) hzw ($A = 13 = 9$)
Δ ⁰	neutraler Akzentor
Δ-	einfach negativ geladener Akzentor
h	Zeitschritt nach (Δ 23 12)
B	Variable in (Δ 8 16) bis (Δ 8 20) oder:
Б	Konstante in (Δ 1.2) hzw. (Δ 13.11)
c	spezifische Wärmekanazität oder: Lichtgeschwindigkeit = $2.90702458.10^{10}$ cm/s
	Specification warmen $(\Delta 23.0)$
C_0, C_1, C_2	Reschaltungskondensator oder:
C	Konstanto in (A 13.0)
d	holbe Dicke des Mittelgebietes
d	offektive helpe Dicke des Mittelgebietes in Bild A 1 1
U _{eff}	Dicko dos nº Gobiotos
u _n	Dicke des n ⁺ Cabietes
u _p dy	delte x hei der Diskretisiorung
dx	Abstand zwiashan dan Hauptaittarnunktan i 1 und i i = 1.2 n
ux _i dy	Abstaliu Zwischen den Hauptgillerpunkten Frund I, I – 1, 2 If
	Diffusionakonatanta dar Elektronon
D _n	Diffusionskonstante der Liecktronen
D _p D ⁺	Diffusionskonstante der Locher
	enhach positiv geladener Donator
D	Rementerledung: 1.60.10 ⁻¹⁹ C
e F	
Eg	$E_{\rm C} = E_{\rm V}$. Dahuapsianu
Ei	E an Zwischengillerpunkt i, $i = 1, 2 \dots n+1$
	Akzeptorniveau
ECe	
	Ferminiveau
	Quasi-Fermi-Niveau der Lächer
E _{Fp}	
En	effektives E zur Berechnung von jp
	Volenzbendkente
EVe f	
	FUIIKIIOII Zuetendegröße in Absehnitt A 22 oder:
F.	zustanusyruise III Absummit A.20 uuer.
	Statistische Funktion in der Deweglichkeitsgleichung
Г ₀ , Г ₁ , Г ₂	Were vor Γ in ADSCHINE A.25 Ledungeträgergeneration durch Stationisation dim $\Omega = cm^{-3} c^{-1}$
G b	Ladungshagergeneration durch Stolsonisation, dim $G_1 = CM^{\circ} S^{\circ}$
11 h	Flanuksune Kunstante. 0,02 TU T JS Rekembingtionengrometer des n ⁺ Cobjetes
ll _n h	Rekombinationsparameter des n°-Gebietes
Пр	Recomplitationsparameter des p-Gebletes

i	Strom oder als Index:
	Nummer des Haupt- oder Zwischengitterpunktes
lc	Strom durch die RC-Beschaltung
I _{Di}	Diodenstrom
1L :	Strom durch L ₁ bzw. L _{St}
IL2	Strom durch L ₂
IF	stationarer vorwartsstrom
IK	Koerzitivstrom
Irr :	Ruckstromspitze definiert in Blid A. 19.2 Otrafanataan
I _{St}	Stutenstrom
1	
ji	J an Zwischengitterpunkt I, I I, Z n+i
Jn	
Jni	Jn an Zwischengitterpunkt I, I I, Z N+I
J p	Locherstromaichte
]pi	J _p an Zwischengillerpunkt I, T I, Z N+1
K	Bollzmannkonstante: 1,38 10-23 J/K Meesenwirkungekenstente für den Akzenter bei der Deektien A: $\Leftrightarrow A^0 + \bigcirc$
κ _{AC}	Massenwirkungskonstante für den Akzeptor bei der Reaktion A \hookrightarrow A ⁺ + \bigcirc
KAV	Massenwirkungskonstante für den Akzeptor bei der Reaktion A [*] \leftrightarrow A + \oplus
KDC	Massenwirkungskonstante für den Donator bei der Reaktion D° \Leftrightarrow D' + \ominus
K _{DV}	Massenwirkungskonstante für den Donator bei der Reaktion D ⁺ \Leftrightarrow D ⁰ + \oplus
L _n	Diffusionslänge von Elektronen
L _p	Diffusionslänge von Löcher
L _{St}	Stufenkern, nicht lineare Induktivität
L ₀	Anfangsinduktivität von L _{st}
L ₁	Lineare Induktivität
L_2	Parasitare Induktivitat der RC-Beschaltung
m _c	effektive Masse eines Elektrons an der Leitungsbandkante
mc	reduzierte effektive Masse eines Elektrons an der Leitungsbandkante
m _v	effektive Masse eines Loches an der Valenzbandkante
m∨	reduzierte ettektive Masse eines Loches an der Valenzbandkante
m ₀	Masse eines Elektrons: 9,11 10° kg
n	Konzentration der Elektronen oder: Zehl der Lleuntritternunkte bei der Diekretisierung eder:
	zani del Haupigillerpunkte bei del Diskrelisierung oder.
n	Figenleitungediehte oder Elektronenkenzentretien en Heupteitternunkt i i = 1, 2, n
n n	effektive Eigenleitungsdichte
n.	Elektronenkonzentration im thermischen Cleichgewicht
n.	Massenwirkungskonstante des SPH Modelles oder:
111	Pandkonzentration für die Differenzialgleichung (Å 16.7)
n ⁺	Hoch detiertes Pandachiet mit Donatordatierung
N	Konzentration
N.	Konzentration der Akzentoren
	Maximale Akzentorkonzentration
N ⁰	Konzentration der neutralen Akzentoren
N ⁻	Konzentration der einfach negativ geladenen Akzentoren
No	effektive Zustandsdichte im Leitungsband
No	Konzentration der Donatoren
	Maximale Donatorkonzentration
N _{D min}	Minimale Donatorkonzentration
N ⁺ ⊓	Konzentration der einfach positiv geladenen Donatoren
N ⁰ D	Konzentration der neutralen Donatoren
N _R	Konzentration der Rekombinationszentren
N⁺ _R	Konzentration der einfach positiv geladenen Rekombinationszentren
N ⁰ _R	Konzentration der neutralen Rekombinationszentren
N⁻ _R	Konzentration der einfach negativ geladenen Rekombinationszentren
N_{Ref}	Referenzkonzentration in der Scharfetter-Relation
N _{St}	Konzentration der Störstellen

Nv	effektive Zustandsdichte im Valenzband
D	Konzentration der Löcher
Di	p an Hauptgitterpunkt i, i = 1, 2 n
	l öcherkonzentration im thermischen Gleichgewicht
P0 D₁	Massenwirkungskonstante des SRH-Modelles
p₁ n⁺	hoch dotiertes Randgebiet mit Akzentordotierung
P	Verlustleistung
Г D	Diodopyorlustloistung
r Di	Verluetleietung pro Elöphonoinhoit
q	Verlustieistung pro Flachenennien
Q	Venustielslung pro volumeneinneit: die venustielslungsdichte
Qrr	
r _n	Rekombinationskoeffizient für Elektronen bei der Rekombination über ein Rekombinationszentrum
	mit einem Energieniveau im verbotenen Band
r _p	Rekombinationskoeffizient für Löcher bei der Rekombination über ein Rekombinationszentrum mit
	einem Energieniveau im verbotenen Band
R	Beschaltungswiderstand
R _A	Augerrekombination, dim $R_A = cm^{-3} s^{-1}$
Rn	Rekombinationsanteile der Elektronen an der Kontinuitätsgleichung, dim R _n = cm ⁻³ s ⁻¹
R _p	Rekombinationsanteile der Löcher an der Kontinuitätsgleichung, dim $R_p = cm^{-3} s^{-1}$
Ro	Oberflächenrekombination
R _{Sch}	Schalterwiderstand
RSBH	Rekombination nach Shockley, Read, Hall
Rthi	Wärmewiderstand am Übergang: linke Metall-Umgebung
R _{thn}	Wärmewiderstand am Übergang: n ⁺ -Silizium-Metall
Retar	Wärmewiderstand am Übergang: n ⁺ -Silizium-Metall
R _{th}	Wärmewiderstand am Übergang: rechte Metall-IImgebung
e e	Oberflächenrekombinationsgeschwindigkeit mit Temperatureinfluss
э с	linearer Rekombinationsparameter des n ⁺ -Gebietes oder:
Sn	Oberflächenrekembinetionsgeschwindigkeit des n ⁺ Emitters
•	Uperindchemierkombinationspeschwindigkeit des fri-Emiliers
Sp	Oberflöchenrekembinetionersechwindigkeit des n ⁺ Emittere
_	Obernachenrekombinationsgeschwindigkeit des p -Emitters
S _O	
t	
t_0, t_1, t_2	Zeitpunkte in Bild A.23.1
	Zeitpunkte in Bild A.19.1 bzw. A.19.2
<u> </u>	absolute l'emperatur
Ti	Temperatur am Hauptgitterpunkt i, i = 1, 2 n
Tn	Normierte Temperatur = T/300 K
T ₀	Anfangstemperatur
u, U	Spannung
UC	Spannung am Kondensator der RC-Beschaltung
U _{L1}	Spannung an der linearen Induktivität L ₁
U _{LSt}	Spannung am Stufenkern L _{st}
u _{Di} , U _{Di}	Spannung über der Diode
U _{dif}	Diffusionsspannung
UD	Batteriespannung
UF	Vorwärtsspannung
URSch	Spannung über R _{Sch}
Vd	Driftgeschwindigkeit
Vd max	maximale Driftgeschwindigkeit
W _{Di}	Verlustarbeit in der Diode
WB	Verlustarbeit in Beschaltungswiderstand R
••ĸ ¥	Abstand oder Parameter in (A 13.9)
N No	Parameter in (Δ 13 10)
AU X.	Diffusionskonstante der Akzentordotiorung
•A	Diffusionskonstante der Anzeptorubierung
∧D 7	parmiarta alaktrischa Ealdstärka in (A 21.1) bis (A 21.2)
∠ 7	nonniene elektrische Felusiarke in (A.21.1) Dis (A.21.3) Rewegliebkeiteverbältnis zur Persebnung von E
2	Dewegnerikensverhaltnis zur Derechnung von F
α	Exponent in (A.13.1) und (A.13.2)

Stoßionisationsmultiplikator für Elektronen oder: α_n Einfang-Koeffizient für Elektronen durch neutrale Rekombinationszentren mit zwei Energieniveaus im verbotenen Band Stoßionisationsmultiplikator für Löcher oder: α_{p} Einfang-Koeffizient für Löcher durch einfach negativ geladene Rekombinationszentren mit zwei Energieniveaus im verbotenen Band Exponent in (A.14.2) ß Einfang-Koeffizient für Elektronen durch einfach positiv geladene Rekombinationszentren mit zwei βn Energieniveaus im verbotenen Band Einfang-Koeffizient für Löcher durch neutrale Rekombinationszentren mit zwei Energieniveaus im βp verbotenen Band effektiver Spinentartungsfaktor für Akzeptoren βA effektiver Spinentartungsfaktor für Donatoren βD Exponent in der Beweglichkeitsgleichung für p. oder: γ Exponent in der Scharfetter-Relation Verschiebung der Leitungsbandkante ΔE_{c} Verengung des Bandabstandes ΔE_{a} Korrektur des effektiven Feldes für jn aufgrund eines Gradienten der Leitungsbandkante ΔE_n Korrektur des effektiven Feldes für j_p aufgrund eines Gradienten der Valenzbandkante ΔE_{p} Korrektur des effektiven Feldes aufgrund eines Gradienten der Temperatur ΔE_T Verschiebung der Valenzbandkante ΔE_V Dielektrizitätskonstante 3 Dielektrizitätskonstante für Luft: 8,86 10⁻¹⁴ F/cm ε0 relative Dielektrizitätskonstante = 11,7 für Silizium εr Wärmeleitfähigkeit λ **Beweglichkeit** μ Beweglichkeit bedingt durch gegenseitige Streuung der Ladungsträger μc Beweglichkeit bedingt durch Streuung an Störstellen μ_{l} Beweglichkeit bedingt durch Streuung am Kristallgitter μL Beweglichkeit der Elektronen μn Beweglichkeit der Elektronen an Zwischengitterpunkt i, i = 1, 2 ... n+l μ_{ni} Beweglichkeit bei niedrigen elektrischen Feldstärken oder: μ_0 Vakuumpermeabilität = $4\pi \ 10^{-9} \ \text{H/cm} = 4\pi \ 10^{-7} \ \text{N/A}^2$; $\epsilon_0 = 1/(\mu_0 \ \text{c}^2)$ Beweglichkeit der Löcher μ_{p} Beweglichkeit der Löcher an Zwischengitterpunkt i, 1 = 1, 2 ... n+l μ_{pi} Dichte ρ_{m} Ladungsträgerlebensdauer τ Ladungsträgerlebensdauer der Elektronen oder: τ_n Nachstellzeitkonstante des negativ ionisierten Goldes Ladungsträgerlebensdauer der Elektronen in der SRH-Gleichung bei niedriger τ_{n0} Störstellenkonzentration Ladungsträgerlebensdauer der Löcher oder: τ_p Nachstellzeitkonstante des positiv ionisierten Goldes Ladungsträgerlebensdauer der Löcher in der SRH-Gleichung bei niedriger Störstellenkonzentration $\tau_{\rm D0}$ magnetischer Fluss oder Potential in (A.11.9) ø magnetischer Fluss bei Sättigung oder Barrierenhöhe in einem Schottkykontakt Øs Elektron θ ⊕ Loch

11.A.25 Literaturverzeichnis

/1/ E. Spenke Elektronische Halbleiter - 2. Auflage Springer, Berlin 1965

- J.S. Blakemore Semiconductor Statistics Pergamon Press, Oxford, 1962
- /3/ S. Selberherr
 Analysis and Simulation of Semiconductor Devices
 Springer-Verlag, Wien, New York, 1984
- J. Cornu, R. Sittig
 The Influence of Doping Inhomogeneities on the Reverse Characteristics of Semiconductor Power Devices
 IEEE-Transactions on Electron Devices, Vol. ED-22, No. 3, March 1975, S. 108-114
- /5/ S. Dhar, A.H. Marshak
 Static Dielectric Constant of Heavily Doped Semiconductors
 Solid-State Electronics, Vol. 28, No. 8, 1985, S. 763-766
- R.K. Cook
 Numerical Simulation of Hot-Carrier Transport in Silicon Bipolar Transistors
 IEEE Transactions on Electron Devices, Vol. ED-30, No. 9, Sept. 1983, S. 1103-1110
- A.H. Marshak, K.M. van Vliet
 Carrier Densities and Emitter Efficiency in Degenerate Materials with Position-Dependent Band Structure
 Solid-State Electronics, 1978, Vol. 21, S. 429-434
- /8/ H.D. Barber
 Effective Mass and Intrinsic Concentration in Silicon Solid-State Electronics, 1967, Vol. 10, S. 1039-1051
- /9/ F.L. Madarasz, J.E. Lang, P.M. Hemeger
 Effective masses for nonparabolic bands in p-type silicon
 J. Appl. Phys. 52(7), July 1981, S. 4646-4648
- G.G. Macfarlane, T.P. McLean, J.E. Quarrington, V. Roberts Fine Structure in the Absorption-Edge Spectrum of Si Physical Review, Vol. 111, Nr. 5, Sept. 1, 1958, S. 1245-1254
- /11/ J.W. Slotboom, H.C. de Graaff Measurements of Bandgap Narrowing in Si Bipolar Transistors Solid-State Electronics, 1976, Vol. 19, S. 857-862
- J.A. Del Alamo, R.M. Swanson
 The Physics and Modelling of Heavily Doped Emitters
 IEEE-Transactions on Electron Devices, Vol. ED-31, No. 12, Dec. 1984, S. 1878-1888
- (13/ G.L. Pearson, J. Bardeen Electrical Properties of Pure Silicon and Silicon Alloys Containing Boron and Phosphorus Physical Review, Vol. 75, No. 5, March 1949, S. 865-883 Physical Review, Vol. 77, 1950, S. 303
- /14/ MEDUSA, User's Guide, Version 4.0, May 1986 und MEDUSA, OSSI Documentation, Version 4.0, W.L. Engl, RWTH Aachen
- W. Shockley, W.T. Read jr.
 Statistics of the Recombinations of Holes and Electrons Physical Review, Vol. 87, No. 5, Sept. 1952, S. 835-842

- R.N. Hall
 Electron-Hole Recombination in Germanium
 Physical Review, Vol. 87, July 1952, S. 387
- /17/ D.L. Scharfetter, H.K. Gummel
 Large-Signal Analysis of a Silicon Read Diode Oscillator
 IEEE Transactions on Electron Devices, ED-16 (1969) 1, S. 64-77
- W.R. Thurber
 Ionization of Dopant Density in Silicon
 in: W.M. Bullis, Semiconductor Measurement Technology Progress Report Jan.-June 1975, S. 13-16
 National Bureau of Standards Special Publication 400-19, April 1976
- /19/ W.R. Runyan Silicon Semiconductor Technology McGraw-Hill, New York, 1975
- (20) C.C. Abbas
 A Theoretical Explanation of the Carrier Lifetime as a Function of the Injection Level in Gold-Doped Silicon
 IEEE Transactions on Electron Devices, Vol. ED-31, No. 10, October 1984, S. 1428-1432
- /21/ S.M. Sze Physics of Semiconductor Devices John Wiley & Sons, New York, 1969 (2. Auflage 1981)
- B.J. Baliga, S. Krishna
 Optimization of Recombination levels and their Capture Cross Section in Power Rectifiers and Thyristors
 Solid-State Electronics, 1977, Vol. 20, S. 225-232
- J.M. Fairfield, B.V. Gokhale
 Gold as a Recombination Centre in Silicon
 Solid-State Electronics, 1965, Vol. 8, S. 685-691
- /24/ O. Engström, HA. Grimmeiss
 Thermal activation energy of the gold-acceptor level in silicon
 Journal of Applied Physics, Vol. 46, No. 2, Feb. 1975, S. 831-837
- /25/ D.V. Lang, H.G. Grimmeiss, E. Meijer, M. Jaros Complex nature of gold-related deep levels in silicon Physical Review B, Vol. 22, No. 7, Oct. 1980, S. 3917-3934
 /26/ C. Hu, W.G. Oldham Carrier Recombination through Donors/Acceptors in heavily doped Silicon App. Phys. Lett. 35(8), Okt. 1979, S. 636-639
- R.H. Wu, A.R. Peaker
 Capture cross sections of the gold donor and acceptor states in n-type Czochralski silicon.
 Solid-State Electronics, 25 (1982) 7, S. 643-649
- P.G. Wilson
 Recombination in Silicon p-π-n Diodes
 Solid-State Electronics, 1967, Vol. 10, S. 145-154
- F. Mousty, P. Ostoja, L. Passari
 Relationship between resistivity and phosphorus concentration in silicon
 Journal of Applied Physics, Vol. 45, Nr. 10, 1974, S. 4576-4580

- /30/ S.D. Brotherton, P. Bradley, A. Gill Annealing kinetics of the gold-iron complex in silicon J. App. Phys. 57(16), March 1985, S. 1783-1790
- /31/ S. Braun, H.G. Grimmeiss
 Field-Independence of Thermal Emission Rate in Au-Doped Silicon Solid State Communications, Vol. 11, 1972, S. 1457-1459
- M.S. Tyagi, R. v. Overstraeten Minority Carrier Recombination in Heavily-Doped Silicon Solid-State Electronics, Vol. 26, No. 6, 1983, S. 577-597
- J. Dziewior, W. Schmid
 Auger Coefficients for highly doped and highly excited Silicon
 Applied Physics Letters, Vol. 31, No. 5, Sept. 1977, S. 346-348
- /34/ L. Huldt, N.G. Nilsson, K.G. Svantesson
 The Temperature Dependence of Band-to-Band Auger Recombination in Silicon
 Appl. Phys. Lett. 35(10), Nov. 1979, S. 776-777
- W. Lochmann, A. Haug
 Phonon-Assisted Auger Recombination in Si with Direct Calculation of the Overlap Integrals
 Solid State Communications, Vol. 35, 1980, S. 553-556
- /36/ J.G. Simmons, G.W. Taylor
 Generalized Theory of Conduction in Schottky Barriers
 Solid-State Electronics, 1983, Vol. 26, S. 705-709
- /37/ R. van Overstraeten, H. de Man Measurement of the Ionization Rates in Diffused Silicon p-n Junctions Solid-State Electronics, 1970, Vol. 13, S. 583-608
- /38/ C. Shekhar, W.S. Khokle
 Transient Behavior of Impact Ionization in Silicon
 IEEE-Trans. on Electron Devices, (1976)9, S. 1109-1110
- W.N. Grant
 Electron and Hole Ionization Rates in Epitaxial Silicon at High Electric Fields
 Solid-State Electronics, 1973, Vol. 16, S. 1189-1203
- /40/ H. Schlangenotto, private Kommunikation
- /41/ T. Ogawa
 Avalanche Breakdown and Multiplication in Silicon pin Junctions
 Japanese Journal of Applied Physics, 1965, Vol. 4, S. 473-484
- /42/ W. AnheierNumerische Analyse von ThyristorenDissertation, RWTH Aachen, 1980
- F. Berz, R.W. Cooper, S. Fagg Recombination in the End Regions of PIN Diodes Solid-State Electronics, 1979, Vol. 22, S. 293-301
- S.S. Li, W.R. Thurber
 The Dopant Density and Temperature Dependence of Electron Mobility and Resistivity in n-Type Silicon
 Solid-State Electronics, Vol. 20, 1977, S. 609-616
- /45/ S.S. Li The Dopant Density and Temperature Dependence of Hole Mobility and Resistivity in Boron doped Silicon Solid-State Electronics, Vol. 21, 1978, S. 1109-1117 /46/ M. Finetti, R. Galloni, A.M. Mazzone Influence of Impurities and Crystalline Defects on Electron Mobility in heavily doped Silicon J. App. Phys. 50(3), March 1979, S. 1381-1385 /47/ N.D. Arora, J.R. Hauser, D.J. Roulston Electron and Hole Mobilities in Silicon as a Function of Concentration and Temperature IEEE Transactions on Electron Devices, ED-29 (1982) 2, S. 292-295 F. Dannhäuser /48/ Die Abhängigkeit der Trägerbeweglichkeit in Silizium von der Konzentration der freien Ladungsträger - I Solid-State Electronics, Vol. 15, 1972, S. 1371-1375 /49/ J. Krausse Die Abhängigkeit der Trägerbeweglichkeit in Silizium von der Konzentration der freien Ladungsträger – II Solid-State Electronics, Vol. 15, 1972, S. 1377-1381 /50/ W.R. Thurber, R.L. Mattis, Y.M. Liu, J.J. Filliben The Relationship Between Resistivity and Dopant Density for Phosphorus- and Boron-Doped Silicon National Bureau of Standards, Washington, May 1981 /51/ H. Brooks Scattering by Ionized Impurities in Semiconductors Phys. Rev. 83 (1951), S. 879 /52/ H. Brooks Mechanisms of Scattering in: Advances in Electronics and Electron Physics, Vol. 7, Academic Press, New York, 1955, S. 144-165 /53/ N.H. Fletcher The High Current Limit for Semiconductor Junction Devices Proceedings of the IRE, June 1957, S. 862-872 /54/ V. Grivitskas, M. Willander, J. Vaitkus The Role of Intercarrier Scattering in Excited Silicon Solid-State Electronics, Vol. 27, No. 6, 1984, S. 565-572 /55/ C. Herrina Transport Properties of a Many-Valley Semiconductor The Bell System Technical Journal, 36 (1955), S. 237-290 /56/ D.E. Burk, V. de La Torre An Empirical Fit to Minority Hole Mobilities IEEE Electron Device Letters, Vol. EDL-5, No. 7, July 1984, S. 231-233 /57/ M.C. Carotta, M. Merli, L. Passari Minority Electron Diffusion Coefficient from Lifetime Measurement Combination Appl. Phys. Lett. 49(1), July 1986, S. 44-45
- J.G. Fossum, D.E. Burk, S-Y. Yung Effective Minority-Carrier Mobility in Heavily Doped Silicon Defined by Trapping and Energy-Gap Narrowing
 IEEE Transactions on Electron Devices, Vol. ED-32, No. 9, Sept. 1985, S. 1874-1877

- A. Neugroschel
 Minority-Carrier Diffusion Coefficients and Mobilities in Silicon
 IEEE Electron Device Letters, Vol. EDL-6, No. 8, Aug. 1985, S. 425-427
- /60/ H.S. Bennett
 Hole and Electron Mobilities in Heavily Doped Silicon:
 Comparison of Theory and Experiment
 Solid-State Electronics, Vol. 26, No. 12, 1983, S. 1157-1166
- /61/ L. Zanfi, A. Losi, C. Jacoboni, C. Canali Impurity Effect on High-Field Transport Properties of Electrons in Silicon IEEE-Transactions on Electron Devices, March 1977, S. 281-283
- /62/ C. Canali, G. Majni, R. Minder, G. Ottaviani Electron and Hole Drift Velocity Measurements in Silicon and Their Empirical Relation to Electric Field and Temperature IEEE-Transactions on Electron Devices, Nov. 1975, S. 1045-1047
- /63/ C. Canali, G. Ottaviani, A. Alberigi Quaranta
 Drift Velocity of Electrons and Holes and associated anisotropic Effects in Silicon
 J. Phys. Chem. Solids, 1971, Vol. 32, S. 1707-1720

/64/ S.K. GhandiSemiconductor Power DevicesJohn Wiley & Sons, New York, 1977

- /65/ R.P. Mertens, H.J. de Man, R.J. van Overstraeten
 Calculation of the Emitter Efficiency of Bipolar Transistors
 IEEE-Transactions on Electron Devices, Vol. ED-20, No. 9, Sept. 1973, S. 772-778
- /66/ I. Ruge Halbleiter-Elektronik, Band 4, Halbleiter-Technologie Springer, Berlin, 1975 (2. Auflage 1984)

/67/ A. S. Grove Physics and Technology of Semiconductor Devices John Wiley & Sons, New York, 1967

R.B. Fair Concentration Profiles of Diffused Dopants in Silicon. S. 315-442 in: F.F.Y. Wang, Materials Processing-Theory and Practices, Volume 2 Impurity Doping Processes in Silicon North Holland Publishing Company, Amsterdam, 1981

- /69/ J.L. Lambert
 Einstellung der Trägerlebensdauer in Thyristorstrukturen
 I. Kleine Lebensdauer: Wiss. Ber. AEG-Telefunken 45 (1972)4, S. 153-162
 II. Hohe Lebensdauer: Wiss. Ber. AEG-Telefunken 46 (1973)1, S. 1-7
- J. Burtscher, F. Dannhäuser, J. Krausse
 Die Rekombination in Thyristoren und Gleichrichtern aus Silizium:
 Ihr Einfluss auf die Durchlasskennlinie und das Freiwerdenzeitverhalten
 Solid-State Electronics, 1975, Vol. 18, S. 35-63
- /71/ H. Schlangenotto, H. Maeder, J. Dziewior Neue Technologien für Silizium-Leistungsbauelemente Rekombination in hoch dotierten Emitterzonen

	Bundesministerium für Forschung und Technologie Forschungsbericht T76-54, Oktober 1976
72	H. Schlangenotto, H. Maeder Spatial Composition and Injection Dependence of Recombination in Silicon Power Device Structures IEEE-Transactions on Electron Devices, Vol. ED-26, No. 3, March 1979, S. 191-200
/73/	M.S. Adler, B.A. Beatty, S. Krishna, V.A.K. Temple, M.L. Torreno jr. Limitations on Injection Efficiency in Power Devices IEEE-Transactions on Electron Devices, Vol. ED-23, No. 8, August 1976, S. 858-863
/74/	W.W. Sheng The Effect of Auger Recombination on the Emitter Injection Efficiency of Bipolar Transistors IEEE-Transactions on Electron Devices, January 1975, S. 25-27
/75/	H. Müller Berechnung des transienten thermischen Verhaltens von Halbleiterventilen im Bereich kurzer Zeiten Dissertation, RWTH - Aachen, 1972
/76/	M.S. Adler, H.H. Glascock Investigation of the Surge Characteristics of Power Rectifiers and Thyristors in Large-Area Press Packages IEEE Transactions on Electron Devices, Vol. ED-26, No. 7, July 1979, S. 1085-1091
77	D.G. Arasli, M.I. Aliev Influence of Defects and of the Interaction between them on Phonon Scattering in Heavily Doped Ge and Si Crystals Phys. stat. sol. 21, 1967, S. 643-648
/78/	A. Goldsmith, T.E. Waterman, H.J. Hirschhorn Handbook of Thermophysical Properties of Solid Materials Revised Edition, Volume I: Elements The Macmillan Company, New York, 1961
/79/	M.S. Adler Accurate Calculations of the Forward Drop and Power Dissipation in Thyristors IEEE Transactions on Electron Devices, ED-25 (1978) 1, S. 16-22
/80/	H.C. de Graaff, J.W. Slotboom, A. Schmitz The Emitter Efficiency of Bipolar Transistors Solid-State Electronics, Vol. 20, 1977, S. 515-521
/81/	M.N. Wybourne Thermal Conductivity of Si EMIS Datareview RN=15711, May 1987 in Properties of Silicon, INSPEC, 1988, P. 37-39

12. Anhang B:

Drucken der Übersetzungslisten von FTN77. Einstellungen: Alle Seitenränder: 1.3 cm. FONTs: Courier New, Größe 8.

12.B.1. Orientierungen bei der Plotausgabe in Plot2d und Plot3d:

Die 8 Fälle in Subroutine KERN3D in PLOT3D, Alpha- und Beta-Werte

12.B.2. Verdeckte Linien in 3D-PLOT, mathematisches Verfahren

```
 \begin{aligned} \mathsf{A} &= \mathsf{CALL} \ \mathsf{LINE} \ \mathsf{X}(\mathsf{I},\mathsf{J}), \mathsf{Y}(\mathsf{I},\mathsf{J}), \mathsf{X}(\mathsf{I},\mathsf{J}+1), \mathsf{Y}(\mathsf{I},\mathsf{J}+1) \\ \mathsf{B} &= \mathsf{CALL} \ \mathsf{LINE} \ \mathsf{X}(\mathsf{I},\mathsf{J}), \mathsf{Y}(\mathsf{I},\mathsf{J}), \mathsf{X}(\mathsf{I}+1,\mathsf{J}), \mathsf{Y}(\mathsf{I}+1,\mathsf{J}) \end{aligned}
```


12.B.3. Zeitableitung, Prediktorberechnung, Vektordiagramme - komplexe Signale:

NAMIN1 ist die Akzeptorkonzentration bei DP1.

NAMIN2 ist die Akzeptorkonzentration bei DP2.

NDMIN1 ist die Donatorkonzentration bei DN1.

NDMIN2 ist die Donatorkonzentration bei DN2.

12.B.5. Parallelwiderstände und Gatestrom, Definition

 $\begin{array}{l} \mbox{In UP-ANF:} \\ 1. \ j_p' = - \ e \ R_{SRH} \\ 2. \ j_n' = + \ e \ R_{SRH} \\ 6. \ j = \ j_p + \ j_n \rightarrow j' = \ j_p' + \ j_n' = e \ R_{SRH} - e \ R_{SRH} = 0 \end{array}$

12.B.6. Alle Subroutinen in ADIOS

SUBROUTINE ABFR(KNR6.ZEILNR.A) SUBROUTINE ACHS(XA,XE,ERG,BESCHR\$,ERGZ,EXP,SCHW) SUBROUTINE ANF SUBROUTINE AUGER SUBROUTINE AUSDR(TYP) SUBROUTINE BERFNK(ZN,ZN1,ZN2,DZN1DZ,DZN2DZ,ZERO,HALF,ONE,TWO,THREE,SIX,EIGHT,K24,K47,EXPM4) DOUBLE PRECISION FUNCTION CFF(X,SQRPI) SUBROUTINE BREAK HANDLER() SUBROUTINE CHARD(INP.OUTP) SUBROUTINE CHARINT(INP.OUTP) SUBROUTINE CPTIME(CPU0,CPUT) SUBROUTINE CURVE1(I,TB,MAXT1,MINT1,ZB,SCALE X,SCALE Y1,MAXZ,MINZ,ITNULL2,IZNULL2) SUBROUTINE DATLES SUBROUTINE GAP(M) SUBROUTINE GIA SUBROUTINE GLMAT1(FN, DFNDN, DATNR, NANF, NMAX, GRF, ZEILNR, EPSMIN, KNR6, NAME1) SUBROUTINE GLMAT2(FN, DFNDN, DFNDP, FP, DFPDN, DFPDP, DATNR, NMAX, GRF, ZEILNR, EPSMIN, ONE, KNR6,NAME1) SUBROUTINE INPUT SUBROUTINE IOSTA(N,KNR) SUBROUTINE KDYN SUBROUTINE KONSTA(M) SUBROUTINE KONZO SUBROUTINE METAL(METC,CH,LAMBD,RHOMC,RHOMCS,SILAEX,SILAMA,TREF,ENDE,KNR2,KNR6, DIALOG, FLAG) SUBROUTINE MU(I,M) SUBROUTINE MUE SUBROUTINE MWK SUBROUTINE NULLP(X,F,Z,PKT1,HALF,ONE,TEN) SUBROUTINE NULLW SUBROUTINE PROFIL SUBROUTINE PRT2D SUBROUTINE PTOUT(IERR) SUBROUTINE PXOUT(IERR) SUBROUTINE RAHMEN(MINT1,MAXT1,MINA1,MAXA1,MINV1,MAXV1,MINP1,MAXP1,SCALE_X,SCALE_Y1, SCV,SCP,KMT172,KMT272,IYRES,IXRES,ITNULL2,IZNULL2) SUBROUTINE REA SUBROUTINE REKOMN SUBROUTINE REKOMP SUBROUTINE RTR SUBROUTINE SCHR(IERR) SUBROUTINE SMOOTH(NMAX,GRF,GL,DX,Y,DY,A,B,C,D,R,R1,R2,U,V,EPSMIN,ZERO,ONE,TWO,THREE, DATNR,ZEILNR,KNR6) SUBROUTINE SPLINE(A,B,C,D,DX,F,DATNR,GRF,NMAX,ZEILNR,ZERO,KNR6,TYP,EPSMIN) SUBROUTINE SUBPSE(KNR1,KNR2,CPU0,CPUT,PXZ,FLGPSE) SUBROUTINE SUBSTP(TPP) SUBROUTINE SURF SUBROUTINE SWST SUBROUTINE TDYN SUBROUTINE UMCHAR(CH,CX0,LEN1,ANF,END1,KNR2,KNR6,DIALOG,FLAG) SUBROUTINE UMINT(CH.IX0.ANF.END1.KNR2.KNR6.DIALOG.FLAG) SUBROUTINE UMLOG(CH,LX0,ANF,END1,KNR2,KNR6,DIALOG,FLAG) SUBROUTINE UMREAL(CH,RX0,ANF,END1,KNR2,KNR6,DIALOG,FLAG) SUBROUTINE UPDATE SUBROUTINE WURZ(C0,C1,C2,C3,X1R,X1I,X2R,X2I,X3R,X3I,FLAG,KNR,PRT,ZERO,HALF,EPSMIN)

12.B.7. Diskretisierungsraster Silizium

NM1=NMAX+1, M1=NMAX-1, O=Hauptgitterpunkt, X=Zwischengitterpunkt Ein Zwischengitterpunkt 1 < n < NM1 liegt genau in der Mitte zwischen 2 Hauptgitterpunkte.

DX wird im Eingabedatensatz für alle Abstände der Hauptgitterpunkte angegeben und für die äußerste zwei Zwischengitterpunkte.

ADIOS:	Anfang: Inhalt = 0D0 * = Berechnung, # = Ausgabe			
COMMON: INPUT:		SFE	SFN 1 1	SFP
PROFIL:	TAUNX TAUPX TAUN0 TAUP0 AKZX AKZ0 DONX DON0 NZRX NRZ0			
GAP:				
MWK:		65		
ADIUS:	YNL *	CE		
NULLW:		CE	DECDX*	
ADTOC:	 TAUNY# TAUDY# TAUNG# DTEN*# VNT * TAUDG# AK7Y# AK7G# DANY# DANG# N7DY# ND7G#			
ΔNF·	TAUNA# TAUFA# TAUNU# DTIN # TNI ' TAUFU# AKZA# AKZU# DUNA# DUNU# NZKA# NKZU# 7NC * GTSP* GT *	CE		FVDX*
KONSTA		CL		
RFKOMN:				
MUE:				
GIA:	GISP GI			
UPDATE:	SDFNDN SDFNDP SDFPDN SDFPDP	CE	1	
TDYN:	FT I DFTDT I	SFE	SFN	SFP
KDYN:				
REKOMN:				
REKOMP:				
MUE:				
GIA:	GISP GI DJNDN DJNDP DJPDN DJPDP DGIDN DGIDP DJNDE DJPDE DGIDE			
UPDAIE:				

12.B.8. Speicherplatzbelegung in ADIOS + Calling sequence

ADIOS: Anfang: Inhalt = 0D0 * = Berechnung, # = Ausgabe

Seite 157

ADIUS: A	Aniang: Innact = 000 * = berechnung # = Ausgabe
COMMON:	
INPUT:	
PROFIL:	
GAP:	
MWK:	
ADIOS:	
NULLW:	
KONZ0:	
ADIOS:	
ANF:	ZN1 ZN2 ZP1 ZP2 DZN1DZ DZN2DZ DZP1DZ DZP2DZ
KONSTA:	YNANDN YNANDP YNDPDN YNDPDP YRZNDN YRZNDP YRZPDN YRZPDP
REKOMN:	YNANDN YNANDP YNDPDN YNDPDP YRZNDN YRZNDP YRZPDN YRZPDP
MUE:	
GIA:	
KDVN.	 YNANION YNANIOD YNIODON YNIODOD YR7NION YR7NIOD YR7DON YR7DOD
RFKOMN.	YNANDN YNANDP YNDPDN YNDPDP YRZNDN YRZNDP YRZPDN YRZPDP
REKOMP:	YNANDN I YNANDP I YNDPDN I YNDPDP I YRZNDN I YRZNDP I YRZPDN I YRZPDP I
MUE:	
GIA:	
UPDATE:	ZN1 ZN2 ZP1 ZP2 DZN1DZ DZN2DZ DZP1DZ DZP2DZ

Speicherplatzbelegung + Calling sequence
ADIOS: Anfang: Inhalt = 0D0 * = Berechnung # = Ausgabe

<pre>Speicherplatzbelegung + Calling sequence ADIOS: Anfang: Inhalt = 0D0 * = Berechnung # = Ausgabe</pre>						
COMMON:	 YRKNDN YRKNDP	 YRKN1 YRKN2	 YRKN3 YRKN4	 YRKPDN YRKPDP	 YRKP1 YRKP2	YRKP3 YRKP4
INPUT: PROFIL: GAP: MWK: ADIOS: NULLW: KONZO:						
ADIUS: ANF:	YPS YNS	JNMDE JPMDE	JNMX JPMX	DLT * DLT2* M	IUNSP* MUPSP*	
REKOMN: MUE: GIA: UPDATE: TDYN:	YRKNDN YRKNDP 	YRKN1 YRKN2 JNMDE JPMDE	YRKN3 YRKN4 JNMX JPMX		I	ALN ALP
KDYN: REKOMN: REKOMP: MUE: GIA: UPDATE:	 YRKNDN YRKNDP 	YRKN1 YRKN2 JNMDE JPMDE	YRKN3 YRKN4 JNMX JPMX	YRKPDN YRKPDP	YRKP1 YRKP2 	YRKP3 YRKP4 ALN ALP

12.B.9. Lösung der Gleichungen in UP-GLMAT2

Eingabe: DFNDN, DFNDP, DFNDN, DFNDP, FN und FP Ausgabe: FN und FP

1. Erster Lösungsschritt:

- Nullsetzen von DFNDP(L,2), DFPDN(L,2),

- Eins setzen von DFNDN(L,2), DFPDP(L,2)

a₁=DFNDN(L,1) A1=a₁/DET usw. DET=DFNDN(L,2)*DFPDP(L,2)-DFPDN(L,2)*DFNDP(L,2)

 $\begin{array}{ll} a_{1}^{*}\Delta n + a_{2}^{*}\Delta p + P = Q & * \mid a_{4} & * \mid -a_{3} \\ a_{3}^{*}\Delta n + a_{4}^{*}\Delta p + R = S & * \mid -a_{2} & * \mid a_{1} \\ & & \mid & \mid \\ (a_{1}a_{4} - a_{2}a_{3}) \Delta n + (a_{4}P - a_{2}R) = (a_{4}Q - a_{2}S) & \leftarrow & \mid \\ (a_{1}a_{4} - a_{2}a_{3}) \Delta p + (a_{1}R - a_{3}P) = (a_{1}S - a_{3}Q) & \leftarrow \leftarrow \leftarrow \leftarrow \\ a_{1}a_{4} - a_{2}a_{3} = DET & & \\ \end{array}$

→ Koef. von Δ n=1, Koef. von Δ p=0 → FN(L)=A4.FN(L) + A2*FP(L) → Koef. von Δ n=0, Koef. von Δ p=1 → FP(L)=A1.FP(L) + A3*FN(L) usw. ↑ Vorzeichen!

↓ = Lösungsrichtung

2. Zweiter Lösungsschritt:

Nullsetzen von DFNDN(L+1,1), DFPDN(L+1,1), DFNDP(L+1,1), DFPDP(L+1,1). Ergebnis:

3. Dritter Lösungsschritt:

Nullsetzen von DFNDN(L,3), DFNDP(L,3), DFPDN(L,3), DFPDP(L,3). Ergebnis:

↑ = Lösungsrichtung

12.B.10. Lösung der Gleichungen in UP-ANF:

Erstes Gleichungssystem: Poisson-Gleichung:

 $CP(1)^{*}(YP(1)-YN(1)+...) + EFELD(1) - EFELD(2) = 0$

 $CP(L)^{*}(YP(L)-YN(L)+ ...) + EFELD(L) - EFELD(L+1) = 0$

CP(NMAX)*(YP(NMAX)-YN(NMAX)+ ...) + EFELD(NMAX) – EFELD(NMAX+1) = 0

Zweites Gleichungssystem: Rekombinationsgleichung:

H13*DXS(2)*YREKN(1) + JN(1) - JN(2) = 0 H13*DXS(L+1)*YREKN(L) + JN(L) - JN(L+1) = 0 H13*DXS(NMAX+1)*YREKN(NMAX) + JN(NMAX) - JN(NMAX+1) = 0 mit:

 $DXS(L+1)=^{1}/_{2}(DX(L) + DX(L+1))$ für L = 2 ... NMAX-1

und

H13 = e * DIMN / DIMT M1=NMAX-1

12.B.11. Lösung der Gleichungen in UP-UPDATE:

Erstes Gleichungssystem:

FN(L) = -YREKN(L) - F0*YN(L) - F1*YNALT(L,1) - F2*YNALT(L,2) + CF(L)*(JN(L+1)-JN(L))

FN(NMAX) = ... - CF(NMAX)*JN(NMAX)

Zweites Gleichungssystem:

FP(1) = ... + CF(1)*JP(1)

 $FP(L) = -YREKP(L) - F0^*YP(L) - F1^*YPALT(L,1) - F2^*YPALT(L,2) - CF(L)^*(JP(L+1)-JP(L))$

Drittes Gleichungssystem:

FE(L) = JP(L)+JN(L)-JDI(L) + F30*EFELD(L) + F31*EALT(L,1) + F32*EALT(L,2)

Randbedingungen: JP(1)=JDI(1) und JN(NMAX+1)=JDI(NMAX+1)

= Ableitungen $\partial JDI/\partial E$

Die drei Gleichungen sind hierbei:

 $FP = -\frac{1}{e} \cdot \frac{\delta j_p}{\delta x} - \sum R_p + G_l - R_A - \frac{\delta p}{\delta t} = 0$ $FN = +\frac{1}{e} \cdot \frac{\delta j_n}{\delta x} - \sum R_n + G_l - R_A - \frac{\delta n}{\delta t} = 0$ $FE = \frac{1}{\varepsilon_0 \varepsilon_r} (j - j_p - j_n) - \frac{\delta E}{\delta t} = 0$

12.B.12. Die Maxwell Gleichungen:

1.
$$\oint_{C} \overline{E} \cdot \overline{d} l = -\frac{d \varphi}{dt} \quad \text{mit:} \quad \varphi = \iint_{A} \overline{B} \cdot \overline{n} \cdot dA \quad \rightarrow \quad \nabla \times \overline{E} = -\frac{\delta \overline{B}}{\delta t} = \text{Induktionsgesetz}$$

- 2. $\oint_{C} \overline{B} \cdot \overline{dI} = \mu_0 I + \varepsilon_0 \mu_0 \frac{d\psi}{dt} \quad \text{mit:} \quad I = \iint_{A} \overline{J} \cdot \overline{n} \cdot dA \quad \rightarrow \quad \nabla \times \overline{H} = \overline{J} + \frac{\delta D}{\delta t}$ $\varepsilon_0 \mu_0 \frac{d \psi}{dt}$ = EI. Verschiebungsstrom
- 3. $\oint_{A} \bar{B} \cdot \bar{n} \cdot dA = 0 \rightarrow \nabla \times \bar{B} = 0$ 4. $\epsilon_{0} \oint_{A} \bar{E} \cdot \bar{n} \cdot dA = q_{tot} \rightarrow \nabla \times \bar{D} = \rho = \text{Poisson}$

D= ϵ E; B= μ H; μ_0 =4 π *10⁻⁷ Vs/Am; ϵ_0 =1/(μ_0 c²)

Aus 1 folgt: u=L*di/dt Aus 2 folgt: i=C*du/dt Aus 4. folgt Poisson: div $\varepsilon \overline{E} = \rho$

12.B.13. Vektoranalyse

grad
$$\phi = \nabla \phi = \bar{x_0} \frac{\partial \phi}{\partial x} + \bar{y_0} \frac{\partial \phi}{\partial y} + \bar{z_0} \frac{\partial \phi}{\partial z}$$

Skalar Vektor

div $\bar{a} = \nabla \cdot \bar{a} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}$ Fluss pro Volumeneinheit. div \bar{a} >0: Quelle, Fluss wird generiert. Vektor

$$\operatorname{rot} \bar{\boldsymbol{a}} = \nabla \times \bar{\boldsymbol{a}} = \begin{vmatrix} \bar{\boldsymbol{x}}_{0} & \bar{\boldsymbol{y}}_{0} & \bar{\boldsymbol{z}}_{0} \\ \frac{\partial}{\partial \boldsymbol{x}} & \frac{\partial}{\partial \boldsymbol{y}} & \frac{\partial}{\partial \boldsymbol{z}} \\ a_{x} & a_{y} & a_{z} \end{vmatrix} = \operatorname{Wirbel} = \operatorname{Zirkulation \ pro \ Flächeneinheit.}$$
$$\operatorname{rot} \bar{\boldsymbol{a}} = \nabla \times \bar{\boldsymbol{a}} = \left(\frac{\partial \boldsymbol{a}_{x}}{\partial \boldsymbol{y}} - \frac{\partial \boldsymbol{a}_{y}}{\partial \boldsymbol{z}} \right) \bar{\boldsymbol{x}}_{0} + \left(\frac{\partial \boldsymbol{a}_{x}}{\partial \boldsymbol{z}} - \frac{\partial \boldsymbol{a}_{z}}{\partial \boldsymbol{x}} \right) \bar{\boldsymbol{y}}_{0} + \left(\frac{\partial \boldsymbol{a}_{y}}{\partial \boldsymbol{x}} - \frac{\partial \boldsymbol{a}_{x}}{\partial \boldsymbol{y}} \right) \bar{\boldsymbol{z}}_{0} \quad \text{wobei:} \ \bar{\boldsymbol{x}}_{0} = (1,0,0), \ \bar{\boldsymbol{y}}_{0} = (0,1,0), \ \bar{\boldsymbol{z}}_{0} = (0,0,1)$$

V

Äußeres, Vektor-Produkt. a,b und a x b bilden eine Schraube mit Rechtsgewinde. a x b = - b x a

Inneres, Skalar-Produkt = $\overline{n.a}$ =n_xa_x+n_ya_y+n_za_z=|n|.|a|.cos ϕ

$$\nabla \times \nabla \phi = \overline{0}$$
 und $\nabla \cdot (\nabla \times \overline{a}) = 0$
rot grad div rot

Gauss:
$$\iiint \nabla \cdot a \ dv = \oiint \overline{n} \cdot a \ \overline{d}A$$
div

Stokes:
$$\iint_{A} (\nabla \times \bar{a}) \cdot \bar{n} \, dA = \oint \bar{a} \cdot \bar{\tau} \, dc$$
rot

Laplace-Operator: $\Delta \phi = \operatorname{div} \operatorname{grad} \phi = (\nabla, \nabla \phi) = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$

12.B.14. Daten für die τ(Δn)-Berechnungen

 $N_{Dot}=10^{14} \text{ cm}^{-3}$ $N_{R}=10^{13} \text{ cm}^{-3}$ (Pt_{II}: N_R=10¹⁰ cm⁻³)

Daten bei 300 K	E _R [eV]	α _n [cm³/s]	α _p [cm³/s]
Au-Akz. ¹⁾	E _L -0,54	1,65*10 ⁻⁹	1,15*10 ⁻⁷
Au-Don. 1)	E _∨ +0,35	6,30*10 ⁻⁸	2,40*10 ⁻⁸
Pt _l -Akz. ²⁾	E _∟ -0,19	2,40*10 ^{-9 *)}	5,00*10 ^{-10 *)}
Pt _l -Don. ²⁾	E _v +0,26	1,00*10 ⁻⁹	1,20*10 ⁻⁹
Pt _{II} -Akz. ²⁾	E _v +0,43	6,00*10 ⁻⁷	4,00*10 ⁻⁵
Pt _{III} -Akz. ²⁾	E _L -0,32	1,00*10 ⁻⁸	4,50*10 ^{-8 *)}
A-Zentrum Akz. 3)	E _L -0,18	2,00*10 ⁻⁷	2,00*10 ^{-7 *)}
V-V-Akz. ³⁾	E _L -0,40	8,00*10-8	2,00*10 ^{-7 *)}

1) Fairfield, Gokhaie; Solid-St. Electron. 8 (1965), 685

2) Milnes, Lisiak; J. Appl Phys. 46 (1975), 5229

3) Kimerling; IEEE Trans. Nucl. Sc. 23 (1976), 1497

*) geschätzte Werte

Temperaturabhängigkeit:

Bei Au: Werte nach Bemski Bei Pt und e⁻-Bestrahlung: Akzeptoren: α_n (400 K) = α_n (300 K) α_p (400 K) = (300/400)². α_p (300 K) Donatoren: α_p (400 K) = α_p (300 K) α_n (400 K) = (300/400)². α_n (300 K)

12.B.15. Ferminiveaus.

I_F = 300 A mit BGN

13. Anhang C: Logische Abläufe in UP-MUE, UP-NULLP, UP-SWST und UP-UPDATE. 13.C.1. UP-MUE(M)

13.C.2. UP-NULLP(X,F,Z)

13.C.3. UP-SWST 1

13.C.5. UP-SWST 3

13.C.6. UP-UPDATE 1

13.C.7. UP-UPDATE 2

13.C.9. UP-UPDATE 4

13.C.10. UP-UPDATE 5

13.C.11. UP-UPDATE 6

13.C.12. UP-UPDATE 7

13.C.13. UP-UPDATE 8

14. Anhang D: MATHCAD Hilfsberechnungen.

14.D.1. Ableitungen im thermischen Gleichgewicht: KONZ0

14.D.2. Ableitungen in KONSTA

Donator

Donator ND⁺/ND =
$$\frac{1}{1 + \frac{\mathbf{r}_{n} \cdot \mathbf{n} + \mathbf{r}_{p} \cdot \mathbf{K}_{DV}}{\mathbf{r}_{p} \cdot \mathbf{p} + \mathbf{r}_{n} \cdot \mathbf{K}_{DC}}} \quad \frac{\mathbf{d}}{\mathbf{dn}} \left(\frac{1}{1 + \frac{\mathbf{r}_{n} \cdot \mathbf{n} + \mathbf{r}_{p} \cdot \mathbf{K}_{DV}}{\mathbf{r}_{p} \cdot \mathbf{p} + \mathbf{r}_{n} \cdot \mathbf{K}_{DC}}} \right) \rightarrow -\frac{\mathbf{r}_{n}}{\left(\mathbf{K}_{DC} \cdot \mathbf{r}_{n} + \mathbf{p} \cdot \mathbf{r}_{p}\right) \cdot \left(\frac{\mathbf{K}_{DV} \cdot \mathbf{r}_{p} + \mathbf{n} \cdot \mathbf{r}_{n}}{\mathbf{K}_{DC} \cdot \mathbf{r}_{n} + \mathbf{p} \cdot \mathbf{r}_{p}} + 1\right)^{2}}$$
$$-\frac{\mathbf{d}}{\mathbf{dn}} \left(\frac{1}{1 + \frac{\mathbf{r}_{n} \cdot \mathbf{n} + \mathbf{r}_{p} \cdot \mathbf{K}_{DV}}{\mathbf{r}_{p} \cdot \mathbf{p} + \mathbf{r}_{n} \cdot \mathbf{K}_{DC}}} \right) = -\frac{\mathbf{r}_{n} \cdot \left(\mathbf{K}_{DC} \cdot \mathbf{r}_{n} + \mathbf{p} \cdot \mathbf{r}_{p}\right)}{\left(\mathbf{K}_{DC} \cdot \mathbf{r}_{n} + \mathbf{p} \cdot \mathbf{r}_{p}\right)^{2}}$$

Seite 186

$$\begin{split} \frac{d}{dp} & \left(\frac{1}{1 + \frac{\mathbf{r}_{n} \cdot \mathbf{n} + \mathbf{r}_{p} \cdot \mathbf{K}_{DV}}{\mathbf{r}_{p} \cdot \mathbf{p} + \mathbf{r}_{n} \cdot \mathbf{K}_{DC}} \right) \rightarrow \frac{\mathbf{r}_{p} \cdot \left(\mathbf{K}_{DV} \cdot \mathbf{r}_{p} + \mathbf{n} \cdot \mathbf{r}_{n} \right)}{\left(\mathbf{K}_{DC} \cdot \mathbf{r}_{n} + \mathbf{p} \cdot \mathbf{r}_{p} \right)^{2} \cdot \left(\frac{\mathbf{K}_{DV} \cdot \mathbf{r}_{p} + \mathbf{n} \cdot \mathbf{r}_{n}}{\mathbf{K}_{DC} \cdot \mathbf{r}_{n} + \mathbf{p} \cdot \mathbf{r}_{p} \right)^{2}} \\ \frac{d}{dp} \left(\frac{1}{1 + \frac{\mathbf{r}_{n} \cdot \mathbf{n} + \mathbf{r}_{p} \cdot \mathbf{K}_{DV}}{\mathbf{r}_{p} \cdot \mathbf{p} + \mathbf{r}_{n} \cdot \mathbf{K}_{DC}} \right) = \frac{\mathbf{r}_{p} \cdot \left(\mathbf{K}_{DV} \cdot \mathbf{r}_{p} + \mathbf{n} \cdot \mathbf{r}_{n} \right)}{\left(\mathbf{K}_{DC} \cdot \mathbf{r}_{n} + \mathbf{K}_{DV} \cdot \mathbf{r}_{p} + \mathbf{n} \cdot \mathbf{r}_{n} + \mathbf{p} \cdot \mathbf{r}_{p} \right)^{2}} \end{split}$$

Akzeptor

$$\begin{aligned} \mathsf{Akzeptor} \,\mathsf{N}_{\mathsf{A}}^{\mathsf{T}}/\mathsf{N}_{\mathsf{A}} &= \frac{1}{1 + \frac{\mathsf{r}_{p} \cdot \mathsf{p} + \mathsf{r}_{n} \cdot \mathsf{K}_{\mathsf{A}\mathsf{C}}}{\mathsf{r}_{n} \cdot \mathsf{n} + \mathsf{r}_{p} \cdot \mathsf{K}_{\mathsf{A}\mathsf{V}}}} \xrightarrow{\mathsf{d}} \left(\frac{1}{1 + \frac{\mathsf{r}_{p} \cdot \mathsf{p} + \mathsf{r}_{n} \cdot \mathsf{K}_{\mathsf{A}\mathsf{C}}}{\mathsf{r}_{n} \cdot \mathsf{n} + \mathsf{r}_{p} \cdot \mathsf{K}_{\mathsf{A}\mathsf{V}}}} \right) \xrightarrow{\to} \frac{\mathsf{r}_{n} \cdot \left(\mathsf{K}_{\mathsf{A}\mathsf{C}} \cdot \mathsf{r}_{n} + \mathsf{p} \cdot \mathsf{r}_{p}\right)}{\left(\mathsf{K}_{\mathsf{A}\mathsf{V}} \cdot \mathsf{r}_{p} + \mathsf{n} \cdot \mathsf{r}_{n}\right)^{2} \cdot \left(\frac{\mathsf{K}_{\mathsf{A}\mathsf{C}} \cdot \mathsf{r}_{n} + \mathsf{p} \cdot \mathsf{r}_{p}}{\mathsf{K}_{\mathsf{A}\mathsf{V}} \cdot \mathsf{r}_{p} + \mathsf{n} \cdot \mathsf{r}_{n}} + 1\right)^{2}}{\frac{\mathsf{d}}{\mathsf{d}\mathsf{n}} \left(\frac{1}{1 + \frac{\mathsf{r}_{p} \cdot \mathsf{p} + \mathsf{r}_{n} \cdot \mathsf{K}_{\mathsf{A}\mathsf{C}}}{\mathsf{r}_{n} \cdot \mathsf{n} + \mathsf{r}_{p} \cdot \mathsf{K}_{\mathsf{A}\mathsf{V}}}} \right) \xrightarrow{=} \frac{\mathsf{r}_{n} \cdot \left(\mathsf{K}_{\mathsf{A}\mathsf{C}} \cdot \mathsf{r}_{n} + \mathsf{p} \cdot \mathsf{r}_{p}\right)}{\left(\mathsf{K}_{\mathsf{A}\mathsf{C}} \cdot \mathsf{r}_{n} + \mathsf{K}_{\mathsf{A}\mathsf{V}} \cdot \mathsf{r}_{p} + \mathsf{n} \cdot \mathsf{r}_{n} + \mathsf{p} \cdot \mathsf{r}_{p}\right)^{2}} \\ \frac{\mathsf{d}}{\mathsf{d}\mathsf{n}} \left(\frac{1}{\mathsf{d}\mathsf{p}} \frac{1}{\mathsf{p} \cdot \mathsf{p} + \mathsf{r}_{n} \cdot \mathsf{K}_{\mathsf{A}\mathsf{C}}} \right) \xrightarrow{=} \frac{\mathsf{r}_{n} \cdot \left(\mathsf{K}_{\mathsf{A}\mathsf{C}} \cdot \mathsf{r}_{n} + \mathsf{p} \cdot \mathsf{r}_{p}\right)^{2}}{\left(\mathsf{K}_{\mathsf{A}\mathsf{C}} \cdot \mathsf{r}_{n} + \mathsf{R}_{\mathsf{A}\mathsf{V}} \cdot \mathsf{r}_{p} + \mathsf{n} \cdot \mathsf{r}_{n} + \mathsf{p} \cdot \mathsf{r}_{p}\right)^{2}} \\ \frac{\mathsf{d}}{\mathsf{d}\mathsf{p}} \left(\frac{1}{\mathsf{d}\mathsf{p}} \frac{\mathsf{p}}{\mathsf{p} \cdot \mathsf{p} \cdot \mathsf{r}_{n} \cdot \mathsf{r}_{\mathsf{A}\mathsf{V}}} \right) \xrightarrow{=} \frac{\mathsf{r}_{p} \cdot \left(\mathsf{K}_{\mathsf{A}\mathsf{V}} \cdot \mathsf{r}_{p} + \mathsf{n} \cdot \mathsf{r}_{n} + \mathsf{p} \cdot \mathsf{r}_{p}\right)^{2}}{\left(\mathsf{K}_{\mathsf{A}\mathsf{V}} \cdot \mathsf{r}_{p} + \mathsf{n} \cdot \mathsf{r}_{n} + \mathsf{p} \cdot \mathsf{r}_{p}\right)^{2}} \\ \frac{\mathsf{d}}{\mathsf{d}\mathsf{p}} \left(\frac{\mathsf{p}}{\mathsf{q} \mathsf{p}} \frac{\mathsf{p}}{\mathsf{q} \cdot \mathsf{p} \cdot \mathsf{p} \cdot \mathsf{p} \cdot \mathsf{p} \cdot \mathsf{r}_{\mathsf{n}}} \right) \xrightarrow{=} \frac{\mathsf{p}}{\mathsf{p}} \cdot \left(\mathsf{p}} \mathsf{q} \cdot \mathsf{p} \cdot \mathsf{p}} + \mathsf{p} \cdot \mathsf{p} \cdot \mathsf{p}}{\mathsf{q} \cdot \mathsf{p} \cdot \mathsf{p} \cdot \mathsf{p}} + \mathsf{p} \cdot \mathsf{p} \cdot \mathsf{p}} \right)^{2}} \\ \frac{\mathsf{q}}{\mathsf{q}} \mathsf{p}} \left(\frac{\mathsf{q}}{\mathsf{q}} \mathsf{p} \cdot \mathsf{p} \cdot \mathsf{p} \cdot \mathsf{p} \cdot \mathsf{p} \cdot \mathsf{p}} + \mathsf{p} \cdot \mathsf{p} \cdot \mathsf{p} \cdot \mathsf{p}} \right)^{2}}$$

Gold

$$\begin{aligned} & \text{Gold} / \text{RZ} \, \text{N}_{\text{R}}^{+} = {}_{\text{N}_{\text{R}}} \cdot \frac{\text{B}}{1 + \text{B} + \text{A}} \quad \text{A} = \frac{\alpha_{n} \cdot n + \alpha_{p} \cdot K_{\text{AV}}}{\alpha_{p} \cdot p + \alpha_{n} \cdot K_{\text{AC}}} \quad \text{B} = \frac{\beta_{p} \cdot p + \beta_{n} \cdot K_{\text{DC}}}{\beta_{n} \cdot n + \beta_{p} \cdot K_{\text{DV}}} \\ & \frac{\text{d}}{\text{dn}} \text{A} = \frac{\text{d}}{\text{dn}} \frac{\alpha_{n} \cdot n + \alpha_{p} \cdot K_{\text{AV}}}{\alpha_{p} \cdot p + \alpha_{n} \cdot K_{\text{AC}}} \rightarrow 0 = \frac{\alpha_{n}}{K_{\text{AC}} \cdot \alpha_{n} + p \cdot \alpha_{p}} \quad \frac{\text{d}}{\text{dp}} \text{A} = \frac{\text{d}}{\text{dp}} \frac{\alpha_{n} \cdot n + \alpha_{p} \cdot K_{\text{AV}}}{\alpha_{p} \cdot p + \alpha_{n} \cdot K_{\text{AC}}} \rightarrow 0 = -\frac{\alpha_{p} \cdot (K_{\text{AV}} \cdot \alpha_{p} + n \cdot \alpha_{n})}{(K_{\text{AC}} \cdot \alpha_{n} + p \cdot \alpha_{p})^{2}} \\ & \frac{\text{d}}{\text{dn}} \text{B} = \frac{\text{d}}{\text{dn}} \frac{\beta_{p} \cdot p + \beta_{n} \cdot K_{\text{DC}}}{\beta_{n} \cdot n + \beta_{p} \cdot K_{\text{DV}}} \rightarrow 0 = -\frac{\beta_{n} \cdot (K_{\text{DC}} \cdot \beta_{n} + p \cdot \beta_{p})}{(K_{\text{DV}} \cdot \beta_{p} + n \cdot \beta_{n})^{2}} \quad \frac{\text{d}}{\text{dp}} \text{B} = \frac{\text{d}}{\text{dp}} \frac{\beta_{p} \cdot p + \beta_{n} \cdot K_{\text{DC}}}{\beta_{n} \cdot n + \beta_{p} \cdot K_{\text{DV}}} \rightarrow 0 = \frac{\beta_{p}}{K_{\text{DV}} \cdot \beta_{p} + n \cdot \beta_{n}} \\ & \text{Gold} / \text{RZ} \, \text{N}_{\text{R}}^{+} = \frac{\alpha_{\text{R}}}{N_{\text{R}}} \cdot \frac{\frac{\beta_{p} \cdot p + \beta_{n} \cdot K_{\text{DC}}}{\beta_{n} \cdot n + \beta_{p} \cdot K_{\text{DV}}}}{1 + \frac{\beta_{p} \cdot p + \beta_{n} \cdot K_{\text{DC}}}{\beta_{n} \cdot n + \beta_{p} \cdot K_{\text{DV}}}} + \frac{\alpha_{n} \cdot n + \alpha_{p} \cdot K_{\text{AV}}}{\alpha_{p} \cdot p + \alpha_{n} \cdot K_{\text{AC}}} \quad \frac{\text{d}}{\text{dx}} \left(\frac{B}{1 + B + A} \right) = \frac{(1 + A) \cdot \frac{\text{d}}{\text{dx}} \text{B} - B \cdot \frac{\text{d}}{\text{dx}} A}{(A + B + 1)^{2}} \\ \\ & \frac{\text{d}}{\text{dn}} \left(\frac{\frac{\beta_{p} \cdot p + \beta_{n} \cdot K_{\text{DC}}}{\beta_{n} \cdot n + \beta_{p} \cdot K_{\text{DV}}}}{1 + \frac{\beta_{p} \cdot p + \beta_{n} \cdot K_{\text{DC}}}{\beta_{n} \cdot n + \beta_{p} \cdot K_{\text{DV}}}} + \frac{\alpha_{n} \cdot n + \alpha_{p} \cdot K_{\text{AV}}}{\alpha_{p} \cdot p + \alpha_{n} \cdot K_{\text{AC}}} \quad \frac{\text{d}}{\text{dx}} \left(\frac{B}{1 + B + A} \right) = \frac{(1 + A) \cdot \frac{\text{d}}{\text{dx}} B - B \cdot \frac{\text{d}}{\text{dx}} A}{(A + B + 1)^{2}} \\ \\ & \frac{\text{d}}{\text{dn}} \left(\frac{\frac{\beta_{p} \cdot p + \beta_{n} \cdot K_{\text{DC}}}{\beta_{n} \cdot n + \beta_{p} \cdot K_{\text{DV}}} + \frac{\alpha_{n} \cdot n + \alpha_{p} \cdot K_{\text{AV}}}{\alpha_{p} \cdot p + \alpha_{n} \cdot K_{\text{AC}}} \right) = \frac{(K_{\text{DC}} \cdot \beta_{n} + p \cdot \beta_{p}) \cdot \left[\beta_{n} + \frac{(K_{\text{AV}} \cdot \alpha_{p} + 2 \cdot n \cdot \alpha_{n}) \cdot \beta_{n} + K_{\text{DV}} \cdot \beta_{p} \cdot \alpha_{n}}{(K_{\text{AC}} \cdot \alpha_{n} + p \cdot \alpha_{p}} + \frac{K_{\text{DC}} \cdot \beta_{n} + p \cdot \beta_{p}}{K_{\text{DV}} \cdot \beta_{p} \cdot \alpha_{n}} + \frac{K_{\text{DC}} \cdot \beta_{n} + \gamma_{n} \beta_{n}}{K_$$

$$\frac{d}{dp} \left(\frac{\frac{\beta_{p} \cdot p + \beta_{n} \cdot K_{DC}}{\beta_{n} \cdot n + \beta_{p} \cdot K_{DV}}}{1 + \frac{\beta_{p} \cdot p + \beta_{n} \cdot K_{DC}}{\beta_{n} \cdot n + \beta_{p} \cdot K_{DV}}} + \frac{\alpha_{n} \cdot n + \alpha_{p} \cdot K_{AV}}{\alpha_{p} \cdot p + \alpha_{n} \cdot K_{AC}} \right) = \frac{\beta_{p} + \frac{K_{AV} \cdot \alpha_{p} + n \cdot \alpha_{n}}{K_{AC} \cdot \alpha_{n} + p \cdot \alpha_{p}} \cdot \left(\beta_{p} + \alpha_{p} \cdot \frac{K_{DC} \cdot \beta_{n} + p \cdot \beta_{p}}{K_{AC} \cdot \alpha_{n} + p \cdot \alpha_{p}}\right)}{\left(K_{DV} \cdot \beta_{p} + n \cdot \beta_{n}\right) \cdot \left(\frac{K_{AV} \cdot \alpha_{p} + n \cdot \alpha_{n}}{K_{AC} \cdot \alpha_{n} + p \cdot \alpha_{p}} + \frac{K_{DC} \cdot \beta_{n} + p \cdot \beta_{p}}{K_{DV} \cdot \beta_{p} + n \cdot \beta_{n}} + 1\right)^{2}$$

Gold / RZ N_R⁻ = $N_R \cdot \frac{A}{1 + B + A}$

$$\operatorname{Gold}/\operatorname{RZ}\operatorname{N}_{\operatorname{R}}^{-} = \operatorname{N}_{\operatorname{R}} \cdot \frac{\frac{\alpha_{n} \cdot n + \alpha_{p} \cdot K_{\operatorname{AV}}}{\alpha_{p} \cdot p + \alpha_{n} \cdot K_{\operatorname{AC}}}}{1 + \frac{\beta_{p} \cdot p + \beta_{n} \cdot K_{\operatorname{DC}}}{\beta_{n} \cdot n + \beta_{p} \cdot K_{\operatorname{DV}}} + \frac{\alpha_{n} \cdot n + \alpha_{p} \cdot K_{\operatorname{AV}}}{\alpha_{p} \cdot p + \alpha_{n} \cdot K_{\operatorname{AC}}} \quad \frac{\operatorname{d}}{\operatorname{dx}} \left(\frac{\operatorname{A}}{1 + \operatorname{B} + \operatorname{A}} \right) = \frac{\left(1 + \operatorname{B}\right) \cdot \frac{\operatorname{d}}{\operatorname{dx}} \operatorname{A} - \operatorname{A} \cdot \frac{\operatorname{d}}{\operatorname{dx}} \operatorname{B}}{\left(A + \operatorname{B} + 1\right)^{2}}$$

$$\frac{\mathrm{d}}{\mathrm{dn}} \left(\frac{\frac{\alpha_{n} \cdot \mathbf{n} + \alpha_{p} \cdot K_{\mathrm{AV}}}{\alpha_{p} \cdot \mathbf{p} + \alpha_{n} \cdot K_{\mathrm{AC}}}}{1 + \frac{\beta_{p} \cdot \mathbf{p} + \beta_{n} \cdot K_{\mathrm{DC}}}{\beta_{n} \cdot \mathbf{n} + \beta_{p} \cdot K_{\mathrm{DV}}} + \frac{\alpha_{n} \cdot \mathbf{n} + \alpha_{p} \cdot K_{\mathrm{AV}}}{\alpha_{p} \cdot \mathbf{p} + \alpha_{n} \cdot K_{\mathrm{AC}}}} \right) = \frac{\alpha_{n} + \frac{\left(K_{\mathrm{DC}} \cdot \beta_{n} + \mathbf{p} \cdot \beta_{p}\right)}{\left(K_{\mathrm{DV}} \cdot \beta_{p} + \mathbf{n} \cdot \beta_{n}\right)} \left[\alpha_{n} + \beta_{n} \cdot \frac{\left(K_{\mathrm{AV}} \cdot \alpha_{p} + \mathbf{n} \cdot \alpha_{n}\right)}{\left(K_{\mathrm{DV}} \cdot \beta_{p} + \mathbf{n} \cdot \beta_{n}\right)}\right]}{\left[\left(K_{\mathrm{AC}} \cdot \alpha_{n} + \mathbf{p} \cdot \alpha_{p}\right) \cdot \left(\frac{K_{\mathrm{AV}} \cdot \alpha_{p} + \mathbf{n} \cdot \alpha_{n}}{K_{\mathrm{AC}} + \mathbf{p} \cdot \alpha_{p}} + \frac{K_{\mathrm{DC}} \cdot \beta_{n} + \mathbf{p} \cdot \beta_{p}}{K_{\mathrm{DV}} \cdot \beta_{p} + \mathbf{n} \cdot \beta_{n}} + 1\right)^{2}\right]}$$

$$\frac{\mathrm{d}}{\mathrm{dn}} \left(\frac{\frac{\alpha_{n} \cdot \mathbf{n} + \alpha_{p} \cdot K_{\mathrm{AV}}}{\alpha_{p} \cdot \mathbf{p} + \alpha_{n} \cdot K_{\mathrm{AC}}}}{1 + \frac{\beta_{p} \cdot \mathbf{p} + \beta_{n} \cdot K_{\mathrm{DC}}}{\beta_{n} \cdot \mathbf{n} + \beta_{p} \cdot K_{\mathrm{DV}}} + \frac{\alpha_{n} \cdot \mathbf{n} + \alpha_{p} \cdot K_{\mathrm{AV}}}{\alpha_{p} \cdot \mathbf{p} + \alpha_{n} \cdot K_{\mathrm{AC}}}} \right) = \frac{\left(K_{\mathrm{AV}} \cdot \alpha_{p} + \mathbf{n} \cdot \alpha_{n}\right) \cdot \left[\alpha_{p} + \frac{\left(K_{\mathrm{AC}} \cdot \alpha_{n} + 2 \cdot \mathbf{p} \cdot \alpha_{p}\right) \cdot \beta_{p} + K_{\mathrm{DC}} \cdot \alpha_{p} \cdot \beta_{n}}{K_{\mathrm{DV}} \cdot \beta_{p} + \mathbf{n} \cdot \beta_{n}} + 1\right)^{2}}{\left(K_{\mathrm{AC}} \cdot \alpha_{n} + \mathbf{p} \cdot \alpha_{p}\right) \cdot \left[\alpha_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + 2 \cdot \mathbf{p} \cdot \alpha_{\mathrm{AC}}\right] + \frac{K_{\mathrm{DC}} \cdot \beta_{\mathrm{AC}} + \beta_{\mathrm{AC}} \cdot \beta_{\mathrm{AC}}}{K_{\mathrm{DV}} \cdot \beta_{\mathrm{P}} + \mathbf{n} \cdot \beta_{\mathrm{AC}}} + \frac{\kappa_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + 2 \cdot \mathbf{p} \cdot \alpha_{\mathrm{AC}}}{K_{\mathrm{DV}} \cdot \beta_{\mathrm{P}} + \mathbf{n} \cdot \beta_{\mathrm{AC}}} + \frac{\kappa_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + \mathbf{p} \cdot \alpha_{\mathrm{AC}}}{K_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + \mathbf{p} \cdot \alpha_{\mathrm{AC}}} + \frac{\kappa_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + \mathbf{p} \cdot \alpha_{\mathrm{AC}}}{K_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + \mathbf{p} \cdot \alpha_{\mathrm{AC}}} + \frac{\kappa_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + \mathbf{p} \cdot \alpha_{\mathrm{AC}}}{K_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + \mathbf{p} \cdot \alpha_{\mathrm{AC}}} + \frac{\kappa_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + \mathbf{p} \cdot \alpha_{\mathrm{AC}}}{K_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + \mathbf{p} \cdot \alpha_{\mathrm{AC}}} + \frac{\kappa_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + \mathbf{p} \cdot \alpha_{\mathrm{AC}}}{K_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + \mathbf{p} \cdot \alpha_{\mathrm{AC}}} + \frac{\kappa_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + \mathbf{p} \cdot \alpha_{\mathrm{AC}}}{K_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + \mathbf{p} \cdot \alpha_{\mathrm{AC}}} + \frac{\kappa_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + \mathbf{p} \cdot \alpha_{\mathrm{AC}}}{K_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + \mathbf{p} \cdot \alpha_{\mathrm{AC}}} + \frac{\kappa_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + \kappa_{\mathrm{AC}} + \frac{\kappa_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}}}}{K_{\mathrm{AC}} \cdot \alpha_{\mathrm{AC}} + \mathbf{p} \cdot \alpha_{\mathrm{AC}}} + \frac{\kappa_{\mathrm$$

14.D.3. Bernoulli-Funktion; Näherungen von F und dF/dx:

$$\underbrace{F}_{w}(x) := \frac{x}{e^{x} - 1} \qquad F1(x) := \frac{1}{1 + \frac{x}{2} + \frac{x^{2}}{6} + \frac{x^{3}}{24}} \qquad F2(x) := \frac{1}{1 + \frac{x}{2} + \frac{x^{2}}{6}} \qquad F3(x) := \frac{1}{1 + \frac{x}{2}} \\
\frac{d}{dx} \frac{x}{e^{x} - 1} \rightarrow \frac{1}{e^{x} - 1} - \frac{x \cdot e^{x}}{\left(e^{x} - 1\right)^{2}} \qquad \frac{d}{dx} \frac{1}{1 + \frac{x}{2} + \frac{x^{2}}{6} + \frac{x^{3}}{24}} \rightarrow -\frac{\frac{x^{2}}{8} + \frac{x}{3} + \frac{1}{2}}{\left(\frac{x^{3}}{24} + \frac{x^{2}}{6} + \frac{x}{2} + 1\right)^{2}} \\
\frac{d}{dx} \frac{1}{1 + \frac{x}{2} + \frac{x^{2}}{6}} \rightarrow -\frac{\frac{x}{3} + \frac{1}{2}}{\left(\frac{x^{2}}{6} + \frac{x}{2} + 1\right)^{2}} \qquad \frac{d}{dx} \frac{1}{1 + \frac{x}{2}} \rightarrow -\frac{1}{2 \cdot \left(\frac{x}{2} + 1\right)^{2}} \\
F4(x) := \frac{1}{\frac{x^{8}}{362880} + \frac{x^{7}}{40320} + \frac{x^{6}}{5040} + \frac{x^{5}}{720} + \frac{x^{4}}{120} + \frac{x^{3}}{24} + \frac{x^{2}}{6} + \frac{x}{2} + 1}$$

$$\frac{d}{dx} \frac{1}{\frac{x^{7}}{362880} + \frac{x^{7}}{40320} + \frac{x^{6}}{5040} \dots}{\frac{x^{7}}{362880} + \frac{x^{7}}{4120} + \frac{x^{3}}{24} + \frac{x^{2}}{6} + \frac{x^{2}}{2} + 1} \rightarrow -\frac{\frac{x^{7}}{45360} + \frac{x^{6}}{5760} + \frac{x^{5}}{840} + \frac{x^{4}}{144} + \frac{x^{3}}{30} + \frac{x^{2}}{8} + \frac{x}{3} + \frac{1}{2}}{\left(\frac{x^{8}}{362880} + \frac{x^{7}}{40320} + \frac{x^{6}}{5040} + \frac{x^{5}}{720} + \frac{x^{4}}{120} + \frac{x^{3}}{24} + \frac{x^{2}}{6} + \frac{x}{2} + 1\right)^{2}}$$

14.D.4. Augerrekombination

$$\begin{split} R_{A} &= a_{n} \cdot \left(n^{2} \cdot p - n_{i}^{2} \cdot n_{0}\right) + a_{p} \cdot \left(p^{2} \cdot n - n_{i}^{2} \cdot p_{0}\right) \\ \frac{d}{dn} \left[a_{n} \cdot \left(n^{2} \cdot p - n_{i}^{2} \cdot n_{0}\right) + a_{p} \cdot \left(p^{2} \cdot n - n_{i}^{2} \cdot p_{0}\right)\right] \rightarrow a_{p} \cdot p^{2} + 2 \cdot a_{n} \cdot n \cdot p \\ \frac{d}{dp} \left[a_{n} \cdot \left(n^{2} \cdot p - n_{i}^{2} \cdot n_{0}\right) + a_{p} \cdot \left(p^{2} \cdot n - n_{i}^{2} \cdot p_{0}\right)\right] \rightarrow a_{n} \cdot n^{2} + 2 \cdot a_{p} \cdot p \cdot n \end{split}$$

14.D.5. Gold

$$\begin{split} &R_{p} = \alpha_{p} \big(N_{R,min} \cdot p - N_{R,mull} \cdot K_{AV} \big) + \beta_{p} \left(N_{R,mull} \cdot p - N_{R,plus} \cdot K_{DV} \right) \\ &R_{n} = \alpha_{n} \big(N_{R,mull} \cdot n - N_{R,min} \cdot K_{AC} \big) + \beta_{n} \left(N_{R,plus} \cdot n - N_{R,mull} \cdot K_{DC} \right) \\ &N_{R,mull} = N_{R} - N_{R,min} - N_{R,plus} \\ &R_{p} = \alpha_{p} \Big[N_{R,min} \cdot p - \left(N_{R} - N_{R,min} - N_{R,plus} \right) \cdot K_{AV} \Big] + \beta_{p} \Big[\big(N_{R} - N_{R,min} - N_{R,plus} \right) \cdot p - N_{R,plus} \cdot K_{DV} \Big] \\ &R_{p} = N_{R} \cdot p \cdot \beta_{p} + N_{R,min} \cdot p \cdot \alpha_{p} - N_{R,min} \cdot p \cdot \beta_{p} - N_{R,plus} \cdot p \cdot \beta_{p} - K_{AV} \cdot N_{R} \cdot \alpha_{p} + K_{AV} \cdot N_{R,plus} \cdot \alpha_{p} - K_{DV} \cdot N_{R,plus} \cdot \beta_{p} \\ &R_{p} = N_{R} \cdot (p \cdot \beta_{p} - K_{AV} \cdot \alpha_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (p \cdot \alpha_{p} + K_{AV} \cdot \alpha_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (p \cdot \alpha_{p} + K_{AV} \cdot \alpha_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (p \cdot \alpha_{p} + K_{AV} \cdot \alpha_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (p \cdot \alpha_{p} + K_{AV} \cdot \alpha_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (p \cdot \alpha_{p} + K_{AV} \cdot \alpha_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (p \cdot \alpha_{p} - K_{AV} \cdot \alpha_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (p \cdot \alpha_{p} + K_{AV} \cdot \alpha_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (p \cdot \alpha_{p} + K_{AV} \cdot \alpha_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (p \cdot \alpha_{p} + K_{AV} \cdot \alpha_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (p \cdot \alpha_{p} + K_{AV} \cdot \alpha_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (p \cdot \alpha_{p} + K_{AV} \cdot \alpha_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (p \cdot \alpha_{p} + K_{AV} \cdot \alpha_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (p \cdot \alpha_{p} + K_{AV} \cdot \alpha_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (K_{AV} \cdot \alpha_{p} - K_{DV} \cdot \beta_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (K_{AV} \cdot \alpha_{p} - K_{DV} \cdot \beta_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (K_{AV} \cdot \alpha_{p} - K_{DV} \cdot \beta_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (K_{AV} \cdot \alpha_{p} - K_{DV} \cdot \beta_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (K_{AV} \cdot \alpha_{p} - K_{DV} \cdot \beta_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (K_{AV} \cdot \alpha_{p} - K_{DV} \cdot \beta_{p} - p \cdot \beta_{p}) \dots \\ &+ N_{R,min} (p, n) \cdot (K_{AV} \cdot \alpha_{p} - K_{DV} \cdot \beta_{p} - p \cdot \beta_{p}) \dots \\ &$$

$$\begin{split} R_n &= N_R \cdot \left(n \cdot \alpha_n - K_{DC} \cdot \beta_n \right) \, ... \\ &+ N_{R.min}(p \, , n) \cdot \left(K_{DC} \cdot \beta_n - n \cdot \alpha_n - K_{AC} \cdot \alpha_n \right) \, .. \\ &+ N_{R.plus}(p \, , n) \cdot \left(n \cdot \beta_n + K_{DC} \cdot \beta_n - n \cdot \alpha_n \right) \end{split}$$

$$\begin{split} \frac{d}{dn} & \left[\begin{split} & N_{R} \cdot \left(n \cdot \alpha_{n} - K_{DC} \cdot \beta_{n} \right) \ldots \\ & + N_{R.min}(p,n) \cdot \left(K_{DC} \cdot \beta_{n} - n \cdot \alpha_{n} - K_{AC} \cdot \alpha_{n} \right) \ldots \\ & + N_{R.plus}(p,n) \cdot \left(n \cdot \beta_{n} + K_{DC} \cdot \beta_{n} - n \cdot \alpha_{n} \right) \ldots \end{split} \right] = \frac{d}{dn} \cdot N_{R.plus} \cdot \left(K_{DC} \cdot \beta_{n} - n \cdot \alpha_{n} + n \cdot \beta_{n} \right) \ldots \\ & + \left[-\frac{d}{dn} N_{R.min} \cdot \left(K_{AC} \cdot \alpha_{n} - K_{DC} \cdot \beta_{n} + n \cdot \alpha_{n} \right) \right] \ldots \\ & + N_{R} \cdot \alpha_{n} - \alpha_{n} \cdot N_{R.min} - \left(\alpha_{n} - \beta_{n} \right) \cdot N_{R.plus} \cdot \left(K_{AC} \cdot \alpha_{n} - K_{DC} \cdot \beta_{n} + n \cdot \alpha_{n} \right) \right] \ldots \\ & + N_{R} \cdot \alpha_{n} - \alpha_{n} \cdot N_{R.min} - \left(\alpha_{n} - \beta_{n} \right) \cdot N_{R.plus} \cdot \left(K_{AC} \cdot \alpha_{n} - K_{DC} \cdot \beta_{n} + n \cdot \alpha_{n} \right) \right] \ldots \\ & + N_{R.min}(p,n) \cdot \left(K_{DC} \cdot \beta_{n} - n \cdot \alpha_{n} - K_{AC} \cdot \alpha_{n} \right) \ldots \\ & + N_{R.plus}(p,n) \cdot \left(n \cdot \beta_{n} + K_{DC} \cdot \beta_{n} - n \cdot \alpha_{n} \right) \ldots \\ & = \frac{d}{dp} \cdot N_{R.plus} \cdot \left(K_{DC} \cdot \beta_{n} - n \cdot \alpha_{n} + n \cdot \beta_{n} \right) - \frac{d}{dp} \cdot N_{R.min} \cdot \left(K_{AC} \cdot \alpha_{n} - K_{DC} \cdot \beta_{n} + n \cdot \alpha_{n} \right) \ldots \\ & = \frac{d}{dp} \cdot N_{R.plus} \cdot \left(K_{DC} \cdot \beta_{n} - n \cdot \alpha_{n} + n \cdot \beta_{n} \right) - \frac{d}{dp} \cdot N_{R.min} \cdot \left(K_{AC} \cdot \alpha_{n} - K_{DC} \cdot \beta_{n} + n \cdot \alpha_{n} \right) \ldots \\ & = \frac{d}{dp} \cdot N_{R.plus} \cdot \left(K_{DC} \cdot \beta_{n} - n \cdot \alpha_{n} + n \cdot \beta_{n} \right) - \frac{d}{dp} \cdot N_{R.min} \cdot \left(K_{AC} \cdot \alpha_{n} - K_{DC} \cdot \beta_{n} + n \cdot \alpha_{n} \right) \ldots \\ & = \frac{d}{dp} \cdot N_{R.plus} \cdot \left(K_{DC} \cdot \beta_{n} - n \cdot \alpha_{n} + n \cdot \beta_{n} \right) - \frac{d}{dp} \cdot N_{R.min} \cdot \left(K_{AC} \cdot \alpha_{n} - K_{DC} \cdot \beta_{n} + n \cdot \alpha_{n} \right) \ldots$$

14.D.6. Ableitung der Beweglichkeiten

$$\mu_{\rm C} = \frac{A}{\sqrt{({\rm np})} \cdot \ln \left[1 + \frac{B}{\left({\rm n} \cdot {\rm p}\right)^3}\right]} \text{ mit } A = 14.88 \cdot 10^{20} \cdot \left(\frac{T}{300}\right)^{-.52} \text{ und } B = 7.87 \cdot 10^8 \cdot {\rm T}^2$$

$$\frac{d}{dn}\mu_{C} = \frac{d}{dn}\frac{A}{\sqrt{(np)} \cdot \ln \left[1 + \frac{B}{\frac{1}{(n \cdot p)^{3}}}\right]} \rightarrow \frac{A \cdot B \cdot p}{3 \cdot \sqrt{np} \cdot \ln \left[\frac{B}{\frac{1}{(n \cdot p)^{3}}} + 1\right]^{2} \cdot \left[\frac{B}{\frac{1}{(n \cdot p)^{3}}} + 1\right] \cdot (n \cdot p)^{\frac{4}{3}}$$

$$\frac{\mathrm{d}}{\mathrm{d}p}\mu_{\mathrm{C}} = \frac{\mathrm{d}}{\mathrm{d}p} \frac{\mathrm{A}}{\sqrt{(\mathrm{n}p)} \cdot \mathrm{ln} \left[1 + \frac{\mathrm{B}}{\frac{1}{(\mathrm{n} \cdot \mathrm{p})^{3}}}\right]} \rightarrow \frac{\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{n}}{3 \cdot \sqrt{\mathrm{n}p} \cdot \mathrm{ln} \left[\frac{\mathrm{B}}{\frac{1}{(\mathrm{n} \cdot \mathrm{p})^{3}}} + 1\right]^{2} \cdot \left[\frac{\mathrm{B}}{\frac{1}{(\mathrm{n} \cdot \mathrm{p})^{3}}} + 1\right] \cdot (\mathrm{n} \cdot \mathrm{p})^{\frac{4}{3}}$$

$$\mu = \frac{F(Z)}{\frac{1}{\mu_{L}} + \frac{1}{\mu_{I}} + \frac{1}{\mu_{C}(p,n)}}$$

$$F = \frac{.0954 + .473 \cdot Z - .383 \cdot Z^{2}}{.0956 + .866 \cdot Z - .776 \cdot Z^{2}}$$

$$\frac{d}{dZ}F = \frac{d}{dZ}\frac{a + b \cdot Z - c \cdot Z^{2}}{d + f \cdot Z - g \cdot Z^{2}} \rightarrow \frac{b - 2 \cdot Z \cdot c}{f \cdot Z - g \cdot Z^{2} + d} - \frac{(f - 2 \cdot Z \cdot g) \cdot (b \cdot Z - c \cdot Z^{2} + a)}{(f \cdot Z - g \cdot Z^{2} + d)^{2}}$$

$$\frac{\mathrm{d}}{\mathrm{d}Z}\mathrm{F} = \frac{(\mathrm{b}\cdot\mathrm{g} - \mathrm{c}\cdot\mathrm{f})\cdot\mathrm{Z}^2 + (2\cdot\mathrm{a}\cdot\mathrm{g} - 2\cdot\mathrm{c}\cdot\mathrm{d})\cdot\mathrm{Z} + \mathrm{b}\cdot\mathrm{d} - \mathrm{a}\cdot\mathrm{f}}{\left(\mathrm{f}\cdot\mathrm{Z} - \mathrm{g}\cdot\mathrm{Z}^2 + \mathrm{d}\right)^2}$$

$$Z = \frac{\mu_{L}}{\mu_{L} \cdot \frac{1}{\frac{1}{\mu_{I}} + \frac{1}{\mu_{C}(p,n)}}} \quad \frac{d}{dn} Z = \frac{d}{dn} \frac{\mu_{L}}{\mu_{L} \cdot \frac{1}{\frac{1}{\mu_{I}} + \frac{1}{\mu_{C}(p,n)}}} \rightarrow -\frac{\frac{d}{dn} \mu_{C}(p,n)}{\mu_{C}(p,n)^{2}}$$

$$\begin{split} \frac{d}{dn}\mu &= \frac{d}{dn} \frac{\frac{a+b\cdot Z(p,n)-c\cdot Z(p,n)^2}{1}}{\frac{1}{\mu_L} + \frac{1}{\mu_l} + \frac{1}{\mu_C(p,n)}} = -\frac{\left(\frac{f}{dn} \frac{d}{dn} Z(p,n) - 2 \cdot g \cdot Z(p,n) \frac{d}{dn} Z(p,n)\right) \cdot \left(b \cdot Z(p,n) - c \cdot Z(p,n)^2 + a\right)}{\left(\frac{1}{\mu_C(p,n)} + \frac{1}{\mu_l} + \frac{1}{\mu_L}\right) \cdot \left(f \cdot Z(p,n) - g \cdot Z(p,n)^2 + d\right)^2} \\ &+ \frac{b \cdot \frac{d}{dn} Z(p,n) - 2 \cdot c \cdot Z(p,n) \cdot \frac{d}{dn} Z(p,n)}{\left(\frac{1}{\mu_C(p,n)} + \frac{1}{\mu_l} + \frac{1}{\mu_L}\right) \cdot \left(f \cdot Z(p,n) - g \cdot Z(p,n)^2 + d\right)^2} \\ &+ \frac{b \cdot \frac{d}{dn} Z(p,n) - 2 \cdot c \cdot Z(p,n) \cdot \frac{d}{dn} Z(p,n)}{\left(\frac{1}{\mu_C(p,n)} + \frac{1}{\mu_l} + \frac{1}{\mu_L}\right) \cdot \left(f \cdot Z(p,n) - g \cdot Z(p,n)^2 + d\right)} \\ &+ \frac{d \cdot \frac{d}{dn} \mu_C(p,n) \cdot \left(b \cdot Z(p,n) - g \cdot Z(p,n)^2 + a\right)}{\mu_C(p,n)^2 \cdot \left(\frac{1}{\mu_C(p,n)} + \frac{1}{\mu_l} + \frac{1}{\mu_L}\right)^2 \cdot \left(f \cdot Z(p,n) - g \cdot Z(p,n)^2 + a\right)} \\ &+ \frac{d \cdot \frac{d}{dn} \mu_C(p,n) \cdot \left(b \cdot Z(p,n) - g \cdot Z(p,n)^2 + a\right)}{\mu_C(p,n)^2 \cdot \left(\frac{1}{\mu_C(p,n)} + \frac{1}{\mu_l} + \frac{1}{\mu_L}\right)^2 \cdot \left(f \cdot Z(p,n) - g \cdot Z(p,n)^2 + d\right)} \\ mit \frac{d}{dn} Z(p,n) &= -\frac{\frac{d}{dn} \mu_C(p,n)}{\mu_C(p,n)^2} und \frac{d}{dn} \mu_C(p,n) = \frac{A \cdot B \cdot p}{3 \cdot \sqrt{np} \cdot \ln\left[\frac{B}{(n\cdot p)^3} + 1\right]^2 \cdot \left[\frac{B}{(n\cdot p)^3} + 1\right] \cdot \left(n\cdot p\right)^{\frac{4}{3}}} \\ &\mu = \frac{\mu_0}{\left[1 + \left(\frac{\mu_0 \cdot |E|}{v_{dmax}}\right)^{\beta}\right]^{\frac{1}{\beta}}} \frac{d}{dE}\mu = \frac{d}{dE} \frac{\mu_0}{\left[1 + \left(\frac{\mu_0 \cdot |E|}{v_{dmax}}\right)^{\beta}\right]^{\frac{1}{\beta}}} \rightarrow -\frac{\frac{\mu_0^2 \cdot signum(E,0) \cdot \left(\frac{\mu_0 \cdot |E|}{v_{dmax}}\right)^{\beta-1}}{v_{dmax}\left[\left(\frac{\mu_0 \cdot |E|}{v_{dmax}}\right)^{\beta} + 1\right]^{\frac{1}{\beta}}} \\ \\ &\pi = \frac{\mu_0}{\left[1 + \left(\frac{\mu_0 \cdot |E|}{v_{dmax}}\right)^{\beta}\right]^{\frac{1}{\beta}}} \frac{d}{\mu} = \frac{d}{dE} \frac{\mu_0}{\left[1 + \left(\frac{\mu_0 \cdot |E|}{v_{dmax}}\right)^{\beta}\right]^{\frac{1}{\beta}}} + \frac{d}{\mu} \frac{d}{\mu} \frac{d}{\mu} \frac{d}{\mu} \frac{\mu_0}{v_{dmax}} \frac{d}{\mu} \frac{$$

 $\frac{E = \infty}{|E|} = \frac{v_{dmax}}{|E|}$

14.D.7. Stoßionisation. Ableitungen in UP-UPDATE

$$\alpha = A \cdot e^{\frac{B}{|E|}} \frac{d}{dE} \alpha = \frac{d}{dE} \left(A \cdot e^{\frac{B}{|E|}} \right) \rightarrow 0 = -\frac{A \cdot B \cdot \text{signum}(E, 0) \cdot e^{\frac{B}{|E|}}}{(|E|)^2} - \frac{d}{dE} \left(A \cdot e^{\frac{B}{|E|}} \right) = -\alpha \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2}$$

GI = $\alpha \cdot |i| - d$ or $-d$ or $-i$ or $-i$

$$GI = \alpha \cdot |j| \qquad \frac{d}{dE} GI = \frac{d}{dE} (\alpha(E) \cdot |j(E)|) \rightarrow 0 = |j(E)| \cdot \frac{d}{dE} \alpha(E) + \frac{d}{dE} j(E) \cdot \alpha(E) \cdot \text{signum}(j(E), 0)$$

$$\frac{d}{dE}GI = |j(E)| \cdot \frac{d}{dE}\alpha(E) + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \text{signum}(j(E), 0) = -|j(E)| \cdot \alpha \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \text{signum}(j(E), 0) = -|j(E)| \cdot \alpha \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \text{signum}(j(E), 0) = -|j(E)| \cdot \alpha \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \text{signum}(j(E), 0) = -|j(E)| \cdot \alpha \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \text{signum}(j(E), 0) = -|j(E)| \cdot \alpha \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \text{signum}(j(E), 0) = -|j(E)| \cdot \alpha \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \text{signum}(j(E), 0) = -|j(E)| \cdot \alpha \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \text{signum}(j(E), 0) = -|j(E)| \cdot \alpha \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \text{signum}(j(E), 0) = -|j(E)| \cdot \alpha \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \text{signum}(j(E), 0) = -|j(E)| \cdot \alpha \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \text{signum}(j(E), 0) = -|j(E)| \cdot \alpha \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \text{signum}(j(E), 0) = -|j(E)| \cdot \alpha \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \frac{B \cdot \text{signum}(E, 0)}{(|E|)^2} + \frac{d}{dE}j(E) \cdot \alpha(E) \cdot \frac{B$$

B=-EFELD(L)*A A0=TPMIT(L)-TREF DGIDE(L)=(ALN(L)*DABS(JN(L))*(ALNEX+ALNTK*A0)+ ALP(L)*DABS(JP(L))*(ALPEX+ALPTK*A0))/B+ DSIGN(ALN(L),JN(L))*DJNDE(L)+ DSIGN(ALP(L),JP(L))*DJPDE(L) = das was tatsächlich in UP-GIA programmiert wurde!

14.D.8. Berechnung der Ableitungen der Beweglichkeiten

Diese Ableitungen von μ gehen auch in den Ableitungen von j_n und j_p nach n, p bzw. E ein.

14.D.9. Adios Anleitung; Bernoulli-Funktion; Näherungen von F

 $\begin{array}{l} \underbrace{\text{ORIGIN}}_{x} := 1 \quad x := 0 \\ F_{x}(x) := \frac{x}{e^{\frac{x}{x}} - 1} \quad \underbrace{\text{Full}(x)}_{1} := \frac{1}{1 + \frac{x}{2} + \frac{x^{2}}{6} + \frac{x^{3}}{24}} \quad \underbrace{\text{Full}(x)}_{2} := \frac{1}{1 + \frac{x}{2} + \frac{x^{2}}{6} + \frac{x^{3}}{24}} \quad \underbrace{\text{Full}(x)}_{1} := \frac{1}{1 + \frac{x}{2} + \frac{x^{2}}{6}} \quad \underbrace{\text{Full}(x)}_{$

14.D.10. Ableitungen von F:

x := -10.001,-9.9.. 10

$$dFdx(x) := \frac{1}{e^{x} - 1} - \frac{x \cdot e^{x}}{\left(e^{x} - 1\right)^{2}} dFdx(0) = \mathbf{I}$$

$$dF1dx(x) := -\frac{\frac{x^{2}}{8} + \frac{x}{3} + \frac{1}{2}}{\left(\frac{x^{3}}{24} + \frac{x^{2}}{6} + \frac{x}{2} + 1\right)^{2}} dF2dx(x) := -\frac{\frac{x}{3} + \frac{1}{2}}{\left(\frac{x^{2}}{6} + \frac{x}{2} + 1\right)^{2}} dF3dx(x) := -\frac{1}{2 \cdot \left(\frac{x}{2} + 1\right)^{2}}$$

14.D.12. Ableitungen der Bernoulli-Funktion:

$$df1dx(x) := \frac{\left[(1-x)\cdot\exp(x)-1\right]^2}{\left(\exp(x)-1\right)^2}$$

$$df1dx(x) := \frac{-1\cdot\left(\frac{1}{2} + \frac{1}{3}\cdot x + \frac{1}{8}\cdot x^2 + \frac{1}{30}\cdot x^3 + \frac{1}{144}\cdot x^4 + \frac{1}{840}\cdot x^5 + \frac{1}{5040}\cdot x^7 + \frac{1}{40320}\cdot x^8\right)}{\left(1 + \frac{1}{2}\cdot x + \frac{1}{6}\cdot x^2 + \frac{1}{24}\cdot x^3 + \frac{1}{120}\cdot x^4 + \frac{1}{720}\cdot x^5 + \frac{1}{5040}\cdot x^6 + \frac{1}{40320}\cdot x^8 + \frac{1}{362880}\cdot x^9\right)^2}$$

$$df1dx(x,n) := \frac{-1\cdot\sum_{i=3}^{n} \left[(i-2)\cdot\frac{x^{i-3}}{(i-1)!}\right]}{\left[\sum_{i=2}^{n} \frac{x^{i-2}}{(i-1)!}\right]^2}$$

$$\begin{split} \underset{m \leftarrow 0}{\text{Model ta}} &\leftarrow 0 \\ \text{delta} \leftarrow .1 \\ \text{fmin} \leftarrow \log(10^{-2}) \\ \text{fmax} \leftarrow \log(10^2) \\ \text{for } j \in \text{fmin}, \text{fmin} + 1... \text{fmax} - 1 \\ \text{for } i \in 1, 1 + \text{delta..} 10 - \text{delta} \\ & \text{m} \leftarrow \text{m} + 1 \\ \text{freq}_m \leftarrow i \cdot 10^j \\ \text{freq}_{m+1} \leftarrow 10^{\text{fmax}} \\ \text{freq} \end{split}$$

x := -10, -9.9..10

Bernoulli -Funktionen für negative x-Werte und n = ungerade gehen nicht!

14.D.13. Goldparameter

T := 273.15 + 90

$$\alpha_{n} \coloneqq 1.640 \cdot 10^{-9} \cdot \left(\frac{T}{300}\right)^{0.5} = 1.8044 \times 10^{-9} \qquad \beta_{n} \coloneqq 1.737 \cdot 10^{-8} \cdot \left(\frac{T}{300}\right)^{-1.6} = 1.2795 \times 10^{-8} \cdot 10^{-8} \cdot 10^{-7} = 1.737 \cdot 10^{-7} \cdot \left(\frac{T}{300}\right)^{-0.8} = 1.4908 \times 10^{-7} \qquad \beta_{p} \coloneqq 6.755 \cdot 10^{-8} \cdot \left(\frac{T}{300}\right)^{0.5} = 7.432 \times 10^{-8} \cdot 10^$$

14.D.14. Statistische Funktion für Beweglichkeitsgleichung

$$F(z) := (1+z) \cdot \int_{0}^{\infty} \frac{x^{3} e^{-x}}{x^{2} + 6 \cdot z} dx$$

F(0) = 1 F(.4174) = 0.7141 F(1) = 0.7048 $F(10^{6}) = 1.0001$

Berz:

$$F_{1}(z) := \frac{0.0954 + 0.473 \cdot z - 0.383 \cdot z^{2}}{0.0956 + 0.866 \cdot z - 0.776 \cdot z^{2}}$$

Diese Funktion hat ein Minimum bei.... und ist dann:

F1(.4174076476757900055) = 0.702463113535461

F1(0) = 0.9979 F1(.4174) = 0.7025 F1(1) = 0.9989 F1
$$(10^6)$$
 = 0.4936
z := 0,0.01..1 i := 1..101 $Z_{i,1} := \frac{i-1}{100} Z_{i,2} := F\left(\frac{i-1}{100}\right)$

14.D.15. Sperrspannungsberechnung bei 90°C

 $a := \begin{pmatrix} ND & Emax \\ 2.3 \cdot 10^{12} & 150 \cdot 10^{3} \\ 3.6 \cdot 10^{12} & 155 \cdot 10^{3} \\ 6.4 \cdot 10^{12} & 163 \cdot 10^{3} \\ 12 \cdot 10^{12} & 172 \cdot 10^{3} \end{pmatrix}$ a1 := 138595.5891 b1 := 40723.49443 c1 := 1.42996e-13 a2 := -232675.401 b2 := 13427.19487 x := 1 \cdot 10^{12}, 1.1 \cdot 10^{12} ... 18 \cdot 10^{12} PRNSCHREIBEN("test.dat") := 1 f1.(x) := a1 + b1 $\cdot (1 - e^{-c1 \cdot x})$ f2(x) := a2 + b2 $\cdot \ln(x)$

z

$$\begin{split} & \mathcal{E}_{\text{AV}} \coloneqq 8.86 \cdot 10^{-14} \quad \mathcal{E}_{r} \coloneqq 11.7 \\ & \mathbf{e}_{el} \coloneqq 1.60 \cdot 10^{-19} \\ & \mathbf{U}_{R} \coloneqq 8000 \quad \underline{a2} \coloneqq -232675.401 \quad \underline{b2} \succeq 13427.19487 \\ & \mathbf{x} \coloneqq 3.04 \cdot 10^{12}, 3.05 \cdot 10^{12} \dots 11.92 \cdot 10^{12} \\ & \mathbf{d}(\mathbf{x}) \coloneqq 10^{4} \cdot \frac{\mathcal{E}_{0} \cdot \mathcal{E}_{r} \cdot \mathbf{f2}(\mathbf{x})}{\mathbf{e}_{el} \cdot \mathbf{x}} \cdot \left(1 - \sqrt{1 - \frac{2 \cdot \mathbf{e}_{el} \cdot \mathbf{x} \cdot \mathbf{U}_{R}}{\mathcal{E}_{0} \cdot \mathcal{E}_{r} \cdot \mathbf{f2}(\mathbf{x})^{2}}}\right) \quad \mathbf{f2}_{el}(\mathbf{x}) \coloneqq \mathbf{a2} + \mathbf{b2} \cdot \mathbf{ln}(\mathbf{x}) \\ & \mathbf{d}\left(3.04 \cdot 10^{12}\right) = 572.0856 \quad \mathbf{d}\left(1.192 \times 10^{13}\right) = 914.0441 \end{split}$$

14.D.16. Die erforderliche Mittelgebietsdicke d als Funktion der Grunddotierung

Seite 199

$$\frac{\text{sign}(a,b) := \text{wenn}(b > 0, a, -a)}{\text{arsinh}(x) := \text{sign}\left(\log\left(\left|\frac{x}{2}\right| + \sqrt{\frac{x^2}{4} + 1}\right), x\right)$$

arsinh(x) =
$$arsinh(10^x) =$$
 0.208987640249979 1.004279211356265 0.382775685337863 2.00004342293522 0.518879072448767 3.000000434293831 0.626962920749936 4.00000004342945 0.715383397288135 5.0000000004342945 0.789741262880993 6.00000000043429 0.853701553801701 7.0000000000043429 0.909722100449001 8 0.959507518457233 9 1.004279211356265 10

==> Ab 10² wird der Fehler vernachlässigbar.

14.D.17. Zur Zeitintegration

$$u_{1}$$

$$u_{2}$$

$$u_{1}$$

$$u_{2}$$

$$u_{2}$$

$$u_{2}$$

$$u_{3}$$

$$U_{4}$$

$$U_{5}$$

$$U_{5$$

Die Ableitung bei t=A+B ist:

$$\begin{aligned} \frac{d}{dt} \left(aie + b \cdot t + c \cdot t^2 \right) &= b + 2 \cdot c \cdot t \\ t &= A + B ==> \frac{df}{dt} = b + 2 \cdot c \cdot (A + B) \end{aligned}$$

$$\begin{aligned} \frac{df}{dt} &= \frac{\left(A^2 + 2 \cdot B \cdot A\right) \cdot U_0 + B^2 \cdot U_2 - U_1 \cdot \left(A^2 + 2 \cdot A \cdot B + B^2\right)}{A \cdot B \cdot (A + B)} \end{aligned}$$

$$F_0 &= \frac{(A + 2 \cdot B)}{[B \cdot (A + B)]} \quad F_1 = \frac{-(A + B)}{(A \cdot B)} \quad F_2 = \frac{B}{[A \cdot (A + B)]} \end{aligned}$$

$$F_0 &= \frac{1}{B} + \frac{1}{A + B} \quad F_1 = -\frac{1}{A} - \frac{1}{B} \quad F_2 = \frac{1}{A} - \frac{1}{A + B} \end{aligned}$$

$$\frac{df}{dt} = F_0 \cdot U_0 + F_1 \cdot U_1 + F_2 \cdot U_2 \text{ Hierbei ist: } A = \text{YTALT1} - \text{YTALT2 und } B = \text{YT} - \text{YTALT1} \end{aligned}$$

14.D.18. Prediktorberechnung

$$Q_{3} = \frac{\left(B^{2} \cdot C + B \cdot C^{2}\right)}{\left[A \cdot B \cdot (A + B)\right]} \quad Q_{2} = -\frac{\left(A^{2} \cdot C + 2 \cdot A \cdot B \cdot C + A \cdot C^{2} + B^{2} \cdot C + B \cdot C^{2}\right)}{\left[A \cdot B \cdot (A + B)\right]} \quad Q_{1} = \frac{\left(A^{2} \cdot B + A^{2} \cdot C + A \cdot B^{2} + 2 \cdot A \cdot B \cdot C + A \cdot C^{2}\right)}{\left[A \cdot B \cdot (A + B)\right]}$$
$$Q_{3} = \frac{C \cdot (B + C)}{A \cdot (A + B)} \quad Q_{2} = -\frac{C \cdot (A + B + C)}{A \cdot B} \quad Q_{1} = \frac{(B + C) \cdot (A + B + C)}{B \cdot (A + B)}$$

Im Programm:

$$A1 = \frac{A+B}{A0+A} \quad A2 = \frac{B}{A} \cdot (1+A1)$$

$$Q2 = -Q3 - A2 \quad Q1 = 1 + A2$$

$$Q3 = \frac{B \cdot (A+B)}{A0 \cdot (A0+A)} \quad Q3 = \frac{B}{A0} \cdot A1$$

$$Q2 = -\frac{B \cdot (A0+A+B)}{A0 \cdot A} \quad Q1 = \frac{(A+B) \cdot (A0+A+B)}{A \cdot (A0+A)}$$

14.D.19. Komplexe Gleichungen

$$j := \sqrt{-1}$$

Euler: $e^{j \cdot x} = \cos(x) + j \cdot \sin(x)$ $\cos(x) = \frac{1}{2} \cdot \left(e^{j \cdot x} + e^{-j \cdot x}\right)$ $\sin(x) = \frac{1}{2 \cdot j} \cdot \left(e^{j \cdot x} - e^{-j \cdot x}\right)$
 $\cosh(x) = \frac{1}{2} \cdot \left(e^{x} + e^{-x}\right)$ $\sinh(x) = \frac{1}{2} \cdot \left(e^{x} - e^{-x}\right)$
 $\operatorname{arsinh}(1) = 0.209$ $f(z) := \ln\left(z + \sqrt{z^{2} + 1}\right)$ $f(1) = 0.8814$ $\operatorname{arsinh}(z) = \ln\left(z + \sqrt{z^{2} + 1}\right)$
 $z := .01$ $\operatorname{arsinh}(z) = 2.1715 \times 10^{-3}$ $f(z) = 9.9998 \times 10^{-3}$

Komplexes Signal: $e^{\mathbf{p} \cdot \mathbf{t}}$ komplexe Frequenz: $\mathbf{p} = \sigma + \mathbf{j} \cdot \boldsymbol{\omega}$

 $\operatorname{Re}\left(e^{p\cdot t}\right) = \operatorname{Re}\left[e^{(\sigma+j\cdot\omega)\cdot t}\right] = e^{\sigma\cdot t} \cdot \cos(\omega\cdot t) \quad \frac{d}{dt} \cdot e^{p\cdot t} = p \cdot e^{p\cdot t} usw.$

Wechselstrom / Wechselspannung

$$v(t) = Re(v \cdot e^{j\omega t})$$
 $i(t) = Re(I \cdot e^{j\omega t})$

V, I = Komplexe Sp. bzw. Strom

Bei Leistungsabschluß Z2 und interne Impedanz Z1: Leitung in Abschluß Z2 ist maximal, wenn Z2=Z1

14.D.20. Transformatoren:

$$\begin{split} U_1 &= L_1 \cdot \frac{di_1}{dt} + M \cdot \frac{di_2}{dt} \quad U_2 = L_2 \cdot \frac{di_2}{dt} + M \cdot \frac{di_1}{dt} \\ L_{\sigma 1} &= L_1 - \frac{M^2}{L_2} \quad L_{\sigma 2} = L_2 - \frac{M^2}{L_1} \quad M = \sqrt{L1 \cdot L2} \text{ Gegenseitige Induktivität und Kopplung:} \end{split}$$

14.D.21. Temperatur / Randbedingungen

1. METLI

$$\begin{pmatrix} \frac{\delta T}{\delta t} \end{pmatrix}_{i} = \frac{1}{\rho_{m}c} \cdot \frac{\lambda \cdot \left(\frac{\delta T}{\delta x}\right)_{i+1} - \lambda \cdot \left(\frac{\delta T}{\delta x}\right)_{i}}{dx_{met}}$$

$$FT = T_{i-1} - 2 \cdot T_{i} + T_{i+1} - \frac{\left(\frac{\delta T_{i}}{\delta YT}\right)}{\left[\frac{DIMT \cdot \lambda}{\rho_{m}c \cdot \left(dx_{met}\right)^{2}}\right]}$$

$$2 \le i \le M1$$

2. METRE wie oben

3. Si

$$\left(\frac{\delta T}{\delta t}\right)_{i} = \frac{1}{\rho_{m}c} \cdot \frac{\lambda_{i+1} \cdot \left(\frac{\delta T}{\delta x}\right)_{i+1} - \lambda_{i} \cdot \left(\frac{\delta T}{\delta x}\right)_{i}}{dx_{i+1}} + \frac{A_{i}}{\rho_{m} \cdot c}$$

$$FT = A1 \cdot T_{i-1} - (A1 + A2) \cdot T_{i} + A2 \cdot T_{i+1} - \frac{\delta T_{i}}{\delta YT} + A_{i} \cdot \frac{DIMT}{\rho_{m}c}$$

$$A1 = \frac{DIMT \cdot \lambda_i}{\rho_m c \cdot dx_i \cdot dxs_{i+1}} \quad A2 = \frac{DIMT \cdot \lambda_{i+1}}{\rho_m c \cdot dx_{i+1} \cdot dxs_{i+1}}$$

4. Si-Met rechts

5. Met-Si links

METRE:

$$FN = \frac{1}{\rho_{m}c} \cdot \frac{\lambda \cdot \left(\frac{\delta T}{\delta x}\right)_{2} - G_{eff} \cdot \left(T_{Met_{1}} - T_{Si_{NMAX}}\right)}{dx_{met}} - \frac{\delta T_{Met_{1}}}{\delta YT} - \frac{G_{eff} = \frac{1}{\frac{dx_{NM!}}{\lambda_{Si_{NMAX}}} + \frac{1}{2} \cdot dx_{Met}} + \frac{1}{G_{thn}}}$$

$$G_{th} = \frac{1}{R_{th}}$$
 $R_{th} = \frac{1}{G_{th}}$ $G_{th} = 6.2 \frac{W}{cm^2 K}$ nach Adler

 $FN = A1 \cdot T_{Si_{NMAX}} - (A1 + A2) \cdot T_{Met_1} + A2 \cdot T_{Met_2} - \frac{\delta T_{Met_1}}{\delta YT} \quad A1 = \frac{DIMT \cdot \lambda_{Met}}{\rho_m c \cdot dx_{met}^2} \quad A2 = \frac{DIMT \cdot G_{eff}}{\rho_m c \cdot dx_{met}}$

Die Gesamtlänge der Metalle ist: NMAX*DXMET jeweils von Zwischengitterpunkt zu Zwischengitterpunkt gerechnet.

Metall-Silizium-links

Allgemeine Gleichung

$$\frac{\delta T}{\delta t} = \frac{1}{\rho_m c} \cdot \frac{\delta}{\delta x} \cdot \left(\lambda \cdot \frac{\delta T}{\delta x}\right) + \frac{A}{\rho_m c}$$

Metall links:
$$\frac{\delta T}{\delta t} = \frac{1}{\left(\rho_{m}c\right)_{Met}} \cdot \frac{D - \lambda \cdot \left(\frac{\delta T}{\delta x}\right)_{Met}}{dx_{m}}$$
 mit: $D = G_{eff} \cdot (T_{Si} - T_{met})$ $D = \frac{T_{Si} - T_{met}}{R_{eff}}$

Neu: DXMET=XMET/NMAX

$$FN = A1 \cdot T_{Metli_{M1}} - (A + A2) \cdot T_{Metli_{NMAX}} + A2 \cdot T_{Si_1} - \frac{\delta T_{Metli_{NMAX}}}{\delta YT}$$

Silizium:
$$\frac{\delta T}{\delta t} = \frac{1}{\left(\rho_{m}c\right)_{Si}} \cdot \frac{\lambda \cdot \left(\frac{\delta I}{\delta x}\right)_{Si,2} - D}{dxs(2)} + \frac{A_{1}}{\rho_{m}c}$$

1 ...

$$FN = A1 \cdot T_{Metli_{NMAX}} - (A1 + A2) \cdot T_{Si_1} + A2 \cdot T_{Si_2} - \frac{\delta T_{Si_1}}{\delta YT} + A1 \cdot \frac{DIMT}{(\rho_m c)_{Si}}$$

$$A1 = \frac{DIMT \cdot G_{\text{eff}}}{\left(\rho_{m} c\right)_{Si} \cdot dxs(2)} \quad A2 = \frac{DIMT \cdot \lambda_{Si}(2)}{\left(\rho_{m} c\right)_{Si} \cdot dxs(2) \cdot dx(2)}$$

Die Reihenschaltung von Wärmewiderstände ist: $\frac{dx(1)}{\lambda_{Si}(1)} + \frac{\frac{1}{2} \cdot dx_{Met}}{\lambda_{Met}} + \frac{1}{G_{thp}} = \frac{1}{G_{eff}} \quad \lambda_{Si}(1) \text{ ist Temperaturabh.}$

Metall-Silizium-rechts

$$D = \frac{\text{TEMPRE}(1) - \text{TEMP}(N)}{R_{\text{eff}}}$$

Punkt 1 im Metall:
$$\rho_{m} c \cdot \frac{\delta T_{Met_{1}}}{\delta YT} = \frac{\lambda \cdot \frac{\delta T}{\delta x} - D}{DXMETRE}$$

Punkt NMAX im Si:
$$\rho_{m} c \cdot \frac{\delta T}{\delta YT} = \frac{D - \lambda \cdot \frac{\delta T}{\delta x}}{DXS(NM1)} + AEJ(N)$$

Silizium:

$$FN = \frac{1}{\rho_{m}c} \cdot \frac{D - \lambda_{NMAX} \cdot \left(\frac{\delta T}{\delta x}\right)_{Si,NMAX}}{dxs_{NM1}} - \frac{\delta T_{NMAX}}{\delta YT} + \frac{A_{NMAX}}{\rho_{m}c}$$

Randbedingung Metal-links – Umgebung: Quasi stationär

$$\lambda {\cdot} \frac{\delta T}{\delta x} - G_{th} {\cdot} \big(T - T_0 \big) = 0$$
 Gleichung:

$$FT(1) = TEMPLI(2) - TEMPLI(1) - \frac{G_{th} \cdot DXMET}{LAMBDL} \cdot (TEMPLI(1) - TEMP0)$$

bzw.

$$FT(1) = \frac{R_{th} \cdot LAMBDL}{DXMET} \cdot [(TEMPLI(2) - TEMPLI(1)] - (TEMPLI(1) - TEMP0)$$

Randbedingung Metal-rechts - Umgebung: Quasi stationär

 $\lambda {\cdot} \frac{\delta T}{\delta x} + G_{th} {\cdot} \big(T - T_0 \big) = 0$ Gleichung:

 $FT(3NMAX) = TEMPRE(NMAX) - TEMPRE(M1) + \frac{G_{th} \cdot DXMET}{LAMBDR} \cdot (TEMPRE(NMAX) - TEMP0)$

bzw.

$$FT(3NMAX) = \frac{R_{th} \cdot LAMBDR}{DXMET} \cdot [(TEMPRE(M1) - TEMPRE(NMAX)] - (TEMPRE(NMAX) - TEMP0)$$

G_{th}=0 ==> kein Wärmestrom ==> TEMPLI(2)=TEMPLI(1) bzw. TEMPRE(M1)=TEMPRE(NMAX) G_{th}= ==> ideale Kühlung ==> TEMPLI(1)=TEMP0 bzw. TEMPRE(NMAX)=TEMP0

14.D.22. Stromberechnung in UP-UPDATE

$$\begin{split} u_{Di} + u_{L1} + u_{LSt} + u_{RSch} &= -U_{D} \quad i_{RSch} + I_{F} = i_{L1} \quad i_{RL1PAR} + i_{L1} = i_{LSt} \quad u_{L1} = u_{RL1PAR} = R_{L1PAR} \cdot (i_{LSt} - i_{L1}) \\ u_{L1} &= L1 \cdot \frac{d}{dt} i_{L1} \quad u_{LSt} = LSt \cdot \frac{d}{dt} i_{LSt} = LSt \cdot \frac{d}{dt} i_{L} \quad i_{Di} = i_{LSt} - i_{C} = i_{L} - i_{L2} \quad u_{RSch} = R_{Sch} \cdot (i_{LSt} - I_{F}) \\ \frac{d}{dt} i_{LSt} &= -\left[\frac{U_{D} + u_{Di} + R_{L1PAR} \cdot (i_{LSt} - i_{L1}) + R_{Sch} \cdot (i_{LSt} - I_{F})}{LSt}\right] \\ \frac{d}{dt} i_{LSt} &= \left[\frac{R_{L1PAR} \cdot i_{L1} + R_{Sch} \cdot I_{F} - U_{D} - u_{Di} - (R_{L1PAR} + R_{Sch}) \cdot i_{LSt}}{LSt}\right] \\ \frac{d}{dt} i_{LSt} &= \frac{\left[\frac{R_{L1PAR} \cdot i_{L1} + R_{Sch} \cdot I_{F} - U_{D} - u_{Di} - (R_{L1PAR} + R_{Sch}) \cdot i_{LSt}\right]}{LSt} \\ (A.19.6a) \\ i_{L1} &= i_{LSt} - \frac{u_{L1}}{R_{L1PAR}} \quad \frac{d}{dt} i_{L1} = \frac{R_{L1PAR} \cdot (i_{LSt} - i_{L1})}{L1} \\ (A.19.6b) \\ \frac{d}{dt} i_{C} &= \frac{u_{Di} - i_{C} \cdot R - u_{C}}{L_{2}} \\ (A.19.7) \\ \frac{d}{dt} u_{C} &= \frac{i_{C}}{C} \\ u_{III} \quad \frac{d}{dt} u_{Di} = \frac{i_{CPAR}}{CPAR} \\ (A.19.8a + b) \end{split}$$

$$\begin{pmatrix} \frac{d}{dt}_{i}_{LSt} \\ \frac{d}{dt}_{i}_{L1} \\ \frac{d}{dt}_{i}_{C} \\ \frac{d}{dt}_{u}_{C} \end{pmatrix} = \begin{bmatrix} \frac{-(R_{L1PAR} + R_{Sch})}{LSt} & \frac{R_{L1PAR}}{LSt} & 0 & 0 \\ \frac{R_{L1PAR}}{L1} & \frac{-R_{L1PAR}}{L1} & 0 & 0 \\ 0 & 0 & \frac{-R}{L_{2}} & \frac{-1}{L_{2}} \\ 0 & 0 & \frac{1}{C} & 0 \end{bmatrix} + \begin{bmatrix} \frac{(R_{Sch} \cdot I_{F} - U_{D} - u_{Di})}{LSt} \\ 0 \\ \frac{U_{Di}}{L_{2}} \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \frac{-(R_{L1PAR} + R_{Sch})}{LSt} & \frac{R_{L1PAR}}{LSt} & 0 & 0\\ \frac{R_{L1PAR}}{L1} & \frac{-R_{L1PAR}}{L1} & 0 & 0\\ 0 & 0 & \frac{-R}{L_2} & \frac{-1}{L_2}\\ 0 & 0 & \frac{1}{C} & 0 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{-1}{R_{Sch}} \cdot LSt & \frac{-1}{R_{Sch}} \cdot L1 & 0 & 0\\ \frac{-1}{R_{Sch}} \cdot LSt & -(R_{L1PAR} + R_{Sch}) \cdot \frac{L1}{(R_{L1PAR} \cdot R_{Sch})} & 0 & 0\\ 0 & 0 & -L_2 & -R \cdot C \end{bmatrix}$$

$$LSt = L0$$
 if $^{-I}ST - ^{I}K \le ^{I}LSt \le ^{I}ST - ^{I}K$

LST = L0
$$\left(\frac{I_{ST}}{I_{LSt} + I_{K}}\right)^{2}$$
 otherwise

$$\begin{pmatrix} \frac{d}{dt} \mathbf{i}_{LSt} \\ \frac{d}{dt} \mathbf{i}_{L1} \\ \frac{d}{dt} \mathbf{i}_{C} \\ \frac{d}{dt} \mathbf{u}_{C} \end{pmatrix} = F0 \cdot \begin{pmatrix} \mathbf{i}_{LSt} \\ \mathbf{i}_{L1} \\ \mathbf{i}_{C} \\ \mathbf{u}_{C} \end{pmatrix} + F1 \cdot \begin{pmatrix} \mathbf{i}_{LSt_1} \\ \mathbf{i}_{L1_1} \\ \mathbf{i}_{C_1} \\ \mathbf{u}_{C_1} \end{pmatrix} + F2 \cdot \begin{pmatrix} \mathbf{i}_{LSt_2} \\ \mathbf{i}_{L1_2} \\ \mathbf{i}_{C_2} \\ \mathbf{u}_{C_2} \end{pmatrix}$$

$$\begin{bmatrix} \frac{-1}{R_{\text{Sch}}} \cdot LSt & \frac{-1}{R_{\text{Sch}}} \cdot L1 & 0 & 0 \\ \frac{-1}{R_{\text{Sch}}} \cdot LSt & -\left(\frac{R_{\text{L1PAR}} + R_{\text{Sch}}}{R_{\text{L1PAR}} \cdot R_{\text{Sch}}}\right) \cdot L1 & 0 & 0 \\ 0 & 0 & 0 & C \\ 0 & 0 & -L_2 & -R \cdot C \end{bmatrix} \cdot \begin{bmatrix} \left(\frac{d}{dt}i_{LSt}\right) \\ \frac{d}{dt}i_{L1} \\ \frac{d}{dt}i_{C} \\ \frac{d}{dt}i_{C} \\ \frac{d}{dt}u_{C} \end{bmatrix} - \begin{bmatrix} \frac{\left(R_{\text{Sch}} \cdot I_{F} - U_{D} - u_{Di}\right)}{LSt} \\ 0 \\ \frac{u_{Di}}{L_{2}} \\ 0 \end{bmatrix} = \begin{bmatrix} i_{LSt} \\ i_{L1} \\ i_{C} \\ u_{C} \end{bmatrix}$$

$$\begin{bmatrix} \frac{-1}{R_{Sch}} \cdot LSt & \frac{-1}{R_{Sch}} \cdot LI & 0 & 0 \\ \frac{-1}{R_{Sch}} \cdot LSt & -\left(\frac{R_{L1PAR} + R_{Sch}}{R_{L1PAR} \cdot R_{Sch}}\right) \cdot L1 & 0 & 0 \\ 0 & 0 & 0 & c \\ 0 & 0 & -L_2 & -R \cdot C \end{bmatrix} \begin{bmatrix} i_{LSt} \cdot F0 + i_{LSt_1} \cdot F1 + i_{LSt_2} \cdot F2 - \frac{(R_{Sch} \cdot I_F - U_D - u_{Di})}{LSt} \\ i_{L1} \cdot F0 + i_{L1_1} \cdot F1 + i_{L1_2} \cdot F2 \\ i_{C} \cdot F0 + i_{C_1} \cdot F1 + i_{C_2} \cdot F2 - \frac{u_{Di}}{L_2} \\ 0 & -L_2 & -R \cdot C \end{bmatrix} = \begin{bmatrix} i_{LSt} \cdot F0 + i_{L1_1} \cdot F1 + i_{L1_2} \cdot F2 \\ i_{C} \cdot F0 + i_{C_1} \cdot F1 + i_{C_2} \cdot F2 - \frac{u_{Di}}{L_2} \\ u_{C} \cdot F0 + u_{C_1} \cdot F1 + u_{C_2} \cdot F2 \end{bmatrix} = \begin{bmatrix} c \cdot i_{C_1} \cdot F1 + c \cdot i_{C_2} \cdot F2 - \frac{u_{Di}}{L_2} \\ i_{C} \cdot F0 + i_{C_1} \cdot F1 + i_{C_2} \cdot F2 - \frac{u_{Di}}{L_2} \\ -L_2 \cdot \left(i_{C} \cdot F0 + i_{C_1} \cdot F1 + i_{C_2} \cdot F2 - \frac{u_{Di}}{L_2} \right) + -R \cdot C \cdot \left(u_{C} \cdot F0 + u_{C_1} \cdot F1 + u_{C_2} \cdot F2 \right) \end{bmatrix} - u_{C} = 0$$

$$u_{C} = \frac{\left(\frac{R \cdot C^2 \cdot u_{C_1} \cdot F1 + i_{C_2} \cdot F2 - \frac{u_{Di}}{L_2} \right)}{(1 + R \cdot C \cdot F0 \cdot (1 - C \cdot F0)}$$

 \mathbf{i}_{C} und \mathbf{u}_{C} können unabhängig von \mathbf{i}_{L1} und \mathbf{i}_{LSt} berechnet werden.

$$\begin{pmatrix} \frac{d}{dt}_{LSt} \\ \frac{d}{dt}_{L1} \\ \frac{d}{dt}_{L1} \\ \end{pmatrix} = \begin{bmatrix} \frac{-(R_{L1PAR} + R_{Sch})}{LSt} & \frac{R_{L1PAR}}{LSt} \\ \frac{R_{L1PAR}}{L1} & \frac{-R_{L1PAR}}{L1} \\ \end{pmatrix} \cdot \begin{pmatrix} i_{LSt} \\ i_{L1} \\ \end{pmatrix} + \begin{bmatrix} \frac{(R_{Sch} \cdot I_{F} - U_{D} - u_{Di})}{LSt} \\ 0 \end{bmatrix} \\ \begin{bmatrix} \frac{-1}{R_{Sch}} \cdot LSt & \frac{-1}{R_{Sch}} \\ \frac{-1}{R_{Sch}} \cdot LSt & -\left(\frac{R_{L1PAR} + R_{Sch}}{R_{L1PAR} \cdot R_{Sch}} \right) \\ \frac{-1}{R_{Sch}} \cdot LSt & -\left(\frac{R_{L1PAR} + R_{Sch}}{R_{L1PAR} \cdot R_{Sch}} \right) \\ -L1 \\ \end{bmatrix} \cdot \begin{bmatrix} i_{LSt} \cdot F0 + i_{LSt} \cdot F1 + i_{LSt} \cdot 2 \cdot F2 - \frac{(R_{Sch} \cdot I_{F} - U_{D} - u_{Di})}{LSt} \\ i_{L1} \cdot F0 + i_{L1} \cdot F1 + i_{L1} \cdot 2 \cdot F2 \\ \end{bmatrix} = \begin{pmatrix} i_{LSt} \cdot I_{L1} \\ i_{L1} \\ \end{bmatrix} \\ \begin{bmatrix} -LSt & -\left(1 + \frac{R_{Sch}}{R_{L1PAR}}\right) \\ -LSt & -\left(1 + \frac{R_{Sch}}{R_{L1PAR}}\right) \\ \end{bmatrix} \cdot \begin{bmatrix} i_{LSt} \cdot F0 + i_{LSt} \cdot F1 + i_{LSt} \cdot 2 \cdot F2 - \frac{(R_{Sch} \cdot I_{F} - U_{D} - u_{Di})}{LSt} \\ i_{L1} \cdot F0 + i_{L1} \cdot F1 + i_{L1} \cdot 2 \cdot F2 \\ \end{bmatrix} \\ = \begin{pmatrix} i_{LSt} \cdot R_{Sch} \\ i_{L1} \cdot R_{Sch} \\ \end{bmatrix} \\ = \begin{pmatrix} i_{LSt} \cdot R_{Sch} \\ i_{L1} \cdot R_{Sch} \\ \end{bmatrix}$$

$$i_{L1} = \frac{\begin{bmatrix} (-1) \cdot [(L1_{-1} - L1_{-2} -) - (L5t_{-1} - L5t_{-2} -) - L1PAR] \\ + (-1) \cdot [(i_{L1_{-1}} \cdot F1 + i_{L1_{-2}} \cdot F2) \cdot L1 + u_{Di} + U_{D}] \cdot R_{L1PAR}}{[(R_{L1PAR} + L1 \cdot F0) \cdot (R_{Sch} + F0 \cdot LSt) + L1 \cdot F0 \cdot R_{L1PAR}]}$$

 $i_{LSt} = \frac{\begin{bmatrix} (R_{L1PAR} + L1 \cdot F0) \cdot R_{Sch} \cdot I_{F} \dots \\ + (-1) \cdot (i_{LSt_{1}} \cdot F1 + i_{LSt_{2}} \cdot F2) \cdot (R_{L1PAR} + L1 \cdot F0) \cdot LSt \dots \\ + (-1) \cdot [(i_{L1_{1}} \cdot F1 + i_{L1_{2}} \cdot F2) \cdot L1 \cdot R_{L1PAR} + (u_{Di} + U_{D}) \cdot (R_{L1PAR} + L1 \cdot F0)] \end{bmatrix}}{[(R_{L1PAR} + L1 \cdot F0) \cdot (R_{Sch} + F0 \cdot LSt) + L1 \cdot F0 \cdot R_{L1PAR}]}$

wenn LSt nichtlinear ist, muss zuerst i_{LSt} berechnet werden und danach i_{L1}

 $i_{RL1PAR} = i_{LSt} - i_{L1}$

$$\mathbf{i}_{\text{RL1PAR}} = \text{L1} \cdot \frac{\begin{bmatrix} (\mathbf{I}_{\text{F}} \cdot \text{F0} + \mathbf{i}_{\text{L1_1}} \cdot \text{F1} + \mathbf{i}_{\text{L1_2}} \cdot \text{F2}) \cdot \mathbf{R}_{\text{Sch}} - (\mathbf{u}_{\text{Di}} + \mathbf{U}_{\text{D}}) \cdot \text{F0} \dots \\ + \begin{bmatrix} (\mathbf{i}_{\text{L1_1}} \cdot \text{F1} + \mathbf{i}_{\text{L1_2}} \cdot \text{F2}) - (\mathbf{i}_{\text{LSt_1}} \cdot \text{F1} + \mathbf{i}_{\text{LSt_2}} \cdot \text{F2}) \end{bmatrix} \cdot \text{F0} \cdot \text{LSt}}{\begin{bmatrix} (\mathbf{R}_{\text{L1PAR}} + \text{L1} \cdot \text{F0}) \cdot (\mathbf{R}_{\text{Sch}} + \text{F0} \cdot \text{LSt}) + \text{L1} \cdot \text{F0} \cdot \mathbf{R}_{\text{L1PAR}} \end{bmatrix}}$$

Mit R_{L1PAR} = unendlich folgt: i_{RL1PAR} =0 und I_{LSt} = I_{L1}

Mit R_{L1PAR} = 0 folgt dass der Strom I_{L1} nur noch von der Vorgeschichte abhängt.

$$\mathbf{i}_{L1} = \frac{-(\mathbf{i}_{L1_1} \cdot \mathbf{F1} + \mathbf{i}_{L1_2} \cdot \mathbf{F2})}{\mathbf{F0}} \underset{\text{mit}}{\text{LST}} = \text{LO} \cdot \left(\frac{\mathbf{I}_{\text{ST}}}{\mathbf{i}_{L\text{St}} + \mathbf{I}_{\text{K}}}\right)^2$$

folgt für i_{LSt} eine Gleichung dritter Ordnung. Diese Gleichung kann am besten iterativ gelöst werden.

$$\mathbf{i_{L1}} = \frac{\begin{bmatrix} [\mathbf{I_F} \cdot \mathbf{R_{L1PAR}} - (\mathbf{i_{L1_1}} \cdot \mathbf{F1} + \mathbf{i_{L1_2}} \cdot \mathbf{F2}) \cdot \mathbf{L1}] \cdot \mathbf{R_{Sch}} \cdots}{[(\mathbf{i_{L1_1}} \cdot \mathbf{F1} + \mathbf{i_{L1_2}} \cdot \mathbf{F2}) \cdot \mathbf{L1} \cdot \mathbf{F0} + (\mathbf{i_{LSt_1}} \cdot \mathbf{F1} + \mathbf{i_{LSt_2}} \cdot \mathbf{F2}) \cdot \mathbf{R_{L1PAR}}] \cdot \mathbf{LSt}} \cdots} = \frac{[(\mathbf{i_{L1_1}} \cdot \mathbf{F1} + \mathbf{i_{L1_2}} \cdot \mathbf{F2}) \cdot \mathbf{L1} \cdot \mathbf{F0} + (\mathbf{i_{LSt_1}} \cdot \mathbf{F1} + \mathbf{i_{LSt_2}} \cdot \mathbf{F2}) \cdot \mathbf{R_{L1PAR}}] \cdot \mathbf{LSt}}{[(\mathbf{i_{L1_1}} \cdot \mathbf{F1} + \mathbf{i_{L1_2}} \cdot \mathbf{F2}) \cdot \mathbf{L1} + \mathbf{u_{Di}} + \mathbf{U_{D}}] \cdot \mathbf{R_{L1PAR}}}] \cdot \mathbf{LSt}} \cdots} = \frac{[(\mathbf{i_{L1PAR}} + \mathbf{L1} \cdot \mathbf{F0}) \cdot (\mathbf{i_{L1_1}} \cdot \mathbf{F1} + \mathbf{i_{L1_2}} \cdot \mathbf{F2}) \cdot \mathbf{L1} + \mathbf{u_{Di}} + \mathbf{U_{D}}] \cdot \mathbf{R_{L1PAR}}}] \cdot \mathbf{LSt}}{[(\mathbf{i_{L1PAR}} + \mathbf{L1} \cdot \mathbf{F0}) \cdot (\mathbf{i_{Sch}} + \mathbf{F0} \cdot \mathbf{LSt}) + \mathbf{L1} \cdot \mathbf{F0} \cdot \mathbf{R_{L1PAR}}]}$$

$$i_{\text{LSt}} = \frac{\begin{bmatrix} (R_{\text{L1PAR}} + \text{L1}\cdot\text{F0})\cdot R_{\text{Sch}}\cdot I_{\text{F}} \dots \\ + (-1)\cdot (i_{\text{LSt}_1}\cdot\text{F1} + i_{\text{LSt}_2}\cdot\text{F2})\cdot (R_{\text{L1PAR}} + \text{L1}\cdot\text{F0})\cdot \text{LSt} \dots \\ + (-1)\cdot \left[(i_{\text{L1}_1}\cdot\text{F1} + i_{\text{L1}_2}\cdot\text{F2})\cdot \text{L1}\cdot R_{\text{L1PAR}} + (\mathbf{u}_{\text{Di}} + \mathbf{U}_{\text{D}})\cdot (R_{\text{L1PAR}} + \text{L1}\cdot\text{F0}) \right] \end{bmatrix}}{\left[(R_{\text{L1PAR}} + \text{L1}\cdot\text{F0})\cdot (R_{\text{Sch}} + \text{F0}\cdot\text{LSt}) + \text{L1}\cdot\text{F0}\cdot\text{R}_{\text{L1PAR}} \right]}$$

LSt ist Null

$$\begin{split} \mathbf{i}_{L1} &= \frac{\left[\begin{pmatrix} \mathbf{R}_{\mathrm{Sch}} \cdot \mathbf{I}_{\mathrm{F}} - \mathrm{L1} \cdot \mathbf{i}_{\mathrm{L1_1}} \cdot \mathrm{F1} - \mathrm{L1} \cdot \mathbf{i}_{\mathrm{L1_2}} \cdot \mathrm{F2} - \mathbf{u}_{\mathrm{Di}} - \mathrm{U}_{\mathrm{D}} \end{pmatrix} \cdot \mathbf{R}_{\mathrm{L1PAR}} - \mathbf{R}_{\mathrm{Sch}} \cdot \mathrm{L1} \cdot \mathbf{i}_{\mathrm{L1_1}} \cdot \mathrm{F1} - \mathbf{R}_{\mathrm{Sch}} \cdot \mathrm{L1} \cdot \mathbf{i}_{\mathrm{L1_2}} \cdot \mathrm{F2} \right]}{\left[\begin{pmatrix} \mathbf{R}_{\mathrm{Sch}} + \mathrm{L1} \cdot \mathrm{F0} \end{pmatrix} \cdot \mathbf{R}_{\mathrm{L1PAR}} + \mathrm{L1} \cdot \mathrm{F0} \cdot \mathbf{R}_{\mathrm{Sch}} \right]} \\ \mathbf{i}_{\mathrm{LSt}} &= \frac{\left[\begin{pmatrix} \mathbf{R}_{\mathrm{Sch}} \cdot \mathbf{I}_{\mathrm{F}} - \mathrm{L1} \cdot \mathbf{i}_{\mathrm{L1_1}} \cdot \mathrm{F1} - \mathrm{L1} \cdot \mathbf{i}_{\mathrm{L1_2}} \cdot \mathrm{F2} - \mathbf{u}_{\mathrm{Di}} - \mathrm{U}_{\mathrm{D}} \end{pmatrix} \cdot \mathbf{R}_{\mathrm{L1PAR}} + \mathbf{R}_{\mathrm{Sch}} \cdot \mathbf{I}_{\mathrm{F}} \cdot \mathrm{L1} \cdot \mathrm{F0} - \mathbf{U}_{\mathrm{D}} \cdot \mathrm{L1} \cdot \mathrm{F0} - \mathbf{u}_{\mathrm{Di}} \cdot \mathrm{L1} \cdot \mathrm{F0} \right]}{\left[\begin{pmatrix} \mathbf{R}_{\mathrm{Sch}} + \mathrm{L1} \cdot \mathrm{F0} \end{pmatrix} \cdot \mathbf{R}_{\mathrm{L1PAR}} + \mathrm{L1} \cdot \mathrm{F0} \cdot \mathbf{R}_{\mathrm{Sch}} \right]} \end{split}$$

LSt ist Null, RL1PAR ist unendlich, RSch ungleich Null

$$\begin{split} \mathbf{i}_{L1} &= \frac{-\left(-\mathbf{R}_{\mathrm{Sch}}\cdot\mathbf{I}_{\mathrm{F}} + \mathbf{L1}\cdot\mathbf{i}_{\mathrm{L1_1}}\cdot\mathbf{F1} + \mathbf{L1}\cdot\mathbf{i}_{\mathrm{L1_2}}\cdot\mathbf{F2} + \mathbf{u}_{\mathrm{Di}} + \mathbf{U}_{\mathrm{D}}\right)}{\left(\mathbf{R}_{\mathrm{Sch}} + \mathbf{L1}\cdot\mathbf{F0}\right)} \\ \mathbf{i}_{\mathrm{LSt}} &= \frac{-\left(-\mathbf{R}_{\mathrm{Sch}}\cdot\mathbf{I}_{\mathrm{F}} + \mathbf{L1}\cdot\mathbf{i}_{\mathrm{L1_1}}\cdot\mathbf{F1} + \mathbf{L1}\cdot\mathbf{i}_{\mathrm{L1_2}}\cdot\mathbf{F2} + \mathbf{u}_{\mathrm{Di}} + \mathbf{U}_{\mathrm{D}}\right)}{\left(\mathbf{R}_{\mathrm{Sch}} + \mathbf{L1}\cdot\mathbf{F0}\right)} \end{split}$$

LSt ist Null, RSch ist Null

$$\mathbf{i}_{L1} = \frac{\left(-\mathbf{i}_{L1_1} \cdot \mathbf{F1} - \mathbf{i}_{L1_2} \cdot \mathbf{F2}\right)}{\mathbf{F0}} + \frac{\left(-\mathbf{U}_{D} - \mathbf{u}_{Di}\right)}{(\mathbf{F0} \cdot \mathbf{L1})}$$

$$i_{LSt} = \frac{(-i_{L1_1} \cdot F1 - i_{L1_2} \cdot F2)}{F0} + \frac{(-U_D - u_{Di})}{(F0 \cdot L1)} + \frac{(-U_D - u_{Di})}{R_{L1PAR}}$$

Collect RL1PAR:

$$\begin{split} \mathbf{i}_{L1} = \frac{\begin{bmatrix} \left[\mathbf{I}_{F}\cdot\mathbf{R}_{Sch} + \left(-\mathbf{i}_{LSt_1}\cdot\mathbf{F1} - \mathbf{i}_{LSt_2}\cdot\mathbf{F2}\right)\cdot\mathbf{LSt} - \left(\mathbf{i}_{L1_1}\cdot\mathbf{F1} + \mathbf{i}_{L1_2}\cdot\mathbf{F2}\right)\cdot\mathbf{L1} - \mathbf{u}_{Di} - \mathbf{U}_{D}\right]\cdot\mathbf{R}_{L1PAR}\cdots}{\left[\left(\mathbf{R}_{Sch} + \mathbf{F0}\cdot\mathbf{LSt} + \mathbf{L1}\cdot\mathbf{F0}\right)\cdot\mathbf{R}_{L1PAR} + \mathbf{L1}\cdot\mathbf{F0}\cdot\mathbf{R}_{Sch} + \mathbf{F0}\cdot\mathbf{LSt}\right)\right]} \\ \mathbf{i}_{LSt} = \frac{\begin{bmatrix} \left[\mathbf{I}_{F}\cdot\mathbf{R}_{Sch} + \left(-\mathbf{i}_{LSt_1}\cdot\mathbf{F1} - \mathbf{i}_{LSt_2}\cdot\mathbf{F2}\right)\cdot\mathbf{L1}\cdot\mathbf{F0} + \mathbf{i}_{L1_2}\cdot\mathbf{F2}\right)\cdot\mathbf{L1} - \mathbf{u}_{Di} - \mathbf{U}_{D}\right]\cdot\mathbf{R}_{L1PAR}\cdots}{\left[\left(\mathbf{R}_{Sch} + \mathbf{F0}\cdot\mathbf{LSt} + \mathbf{L1}\cdot\mathbf{F0}\right)\cdot\mathbf{R}_{L1PAR} + \mathbf{L1}\cdot\mathbf{F0}\cdot\left(\mathbf{R}_{Sch} + \mathbf{F0}\cdot\mathbf{LSt}\right)\right]} \\ & \frac{\mathbf{I}_{LSt} = \frac{\left[\begin{bmatrix} \mathbf{I}_{F}\cdot\mathbf{R}_{Sch} + \left(-\mathbf{i}_{LSt_1}\cdot\mathbf{F1} - \mathbf{i}_{LSt_2}\cdot\mathbf{F2}\right)\cdot\mathbf{LSt} - \left(\mathbf{i}_{L1_1}\cdot\mathbf{F1} + \mathbf{i}_{L1_2}\cdot\mathbf{F2}\right)\cdot\mathbf{L1} - \mathbf{u}_{Di} - \mathbf{U}_{D}\right]\cdot\mathbf{R}_{L1PAR}\cdots}{\left[\left(\mathbf{R}_{Sch}\cdot\mathbf{F} - \left(\mathbf{u}_{Di} + \mathbf{U}_{D}\right)\cdot\mathbf{L1}\cdot\mathbf{F0} + \left(-\mathbf{i}_{LSt_1}\cdot\mathbf{F1} - \mathbf{i}_{LSt_2}\cdot\mathbf{F2}\right)\cdot\mathbf{L1}\cdot\mathbf{F0}\cdot\mathbf{LSt}\right]} \\ \end{bmatrix} \end{split}$$

 $U_{R1} := 4800$

$$U_{R1} = \frac{1}{2} \cdot \frac{e_{el}}{\varepsilon_0 \cdot \varepsilon_r} \cdot x \cdot d^2 \qquad d^2 = \frac{U_{R1}}{\left(\frac{1}{2} \cdot \frac{e_{el}}{\varepsilon_0 \cdot \varepsilon_r} \cdot x\right)} \quad d^2 = \frac{2 \cdot U_{R1} \cdot \varepsilon_0 \cdot \varepsilon_r}{e_{el} \cdot x} \quad d(x) := 10^4 \cdot \sqrt{\frac{2 \cdot U_{R1} \cdot \varepsilon_0 \cdot \varepsilon_r}{e_{el} \cdot x}}$$
$$N_D := 6.1 \cdot 10^{12}, 6.15 \cdot 10^{12} \dots 25 \cdot 10^{12}$$

14.D.23. Die erforderliche Breite d* der Raumladungszone beim Abschaltvorgang

14.D.24. Die Ionisierung der Donator- und Akzeptor-Atome

$$f(x) := -.5 \cdot 10^{x} + \sqrt{(.5 \cdot 10^{x})^{2} + 10^{x}}$$

$$f(-5) = 3.1573 \times 10^{-3} \qquad f(0) = 0.618 \qquad f(3) = 0.999 \qquad x := -5, -4.9..3$$

14.D.25. Bandgapnarrowing

x := 14,14.1..20

$$i := 1.. \text{ zeilen(a)} \quad a_{i,3} := 10^{a_{i,2}}$$
$$x := 571,572..911 \quad f_{\text{cons}}(x) := 1.43083e + 13 + \frac{-4.576e + 16}{x} + \frac{5.31008e + 19}{x^2} + \frac{-2.6726e + 22}{x^3} + \frac{5.02883e + 24}{x^4}$$

	571.1929388019	11.8955602067	
	586.3875435852	11.832024521	
	609.7518648846	11.7569642852	
	629.6069458609	11.7019358255	
	630.773132846	11.7019244332	
	650.6282138223	11.6471535874	
	651.7944008074	11.6471422485	
	676.3206373447	11.5809753558	
	705.5158935694	11.5074517158	
	730.0442659803	11.4382582514	
	751.0740774361	11.3695140483	
	772.1017530183	11.3049573663	
a :=	788.4646806602	11.2408110139	
	805.9959311608	11.1732861062	
	823.5378610294	11.0876392192	
	838.7452810543	11.0063449362	
	853.9676521943	10.9001381719	
	865.6871906321	10.8021996078	
	876.2384062111	10.7087267553	
	884.4615195673	10.608995842	
	892.6910405442	10.4996701803	
	897.4027777036	10.4227781936	
	900.948327878	10.3464593808	
	906.8476107584	10.2364403298	
	910.4123837951	10.1309933029	

a =		0	1	2
	0	571.1929	11.8956	7.8625.1011
	1	586.3875	11.832	6.7924·10 ¹¹
	2	609.7519	11.757	5.7143·10 ¹¹
	3	629.6069	11.7019	5.0343·10 ¹¹
	4	630.7731	11.7019	5.0341·10 ¹¹
	5	650.6282	11.6472	4.4377·10 ¹¹
	6	651.7944	11.6471	4.4375·10 ¹¹
	7	676.3206	11.581	3.8104·10 ¹¹
	8	705.5159	11.5075	3.217·10 ¹¹
	9	730.0443	11.4383	2.7432·10 ¹¹
	10	751.0741	11.3695	2.3416·10 ¹¹
	11	772.1018	11.305	2.0182·10 ¹¹
	12	788.4647	11.2408	1.741.1011
	13	805.9959	11.1733	1.4903.1011
	14	823.5379	11.0876	1.2236.1011
	15	838.7453	11.0063	

14.D.26. Der erforderliche Mindestwert von $N_{\text{DSI}\lambda}$ in der Stoppzone von Vierschichtdioden

Rank 1 Eqn 8002 Exponential(a,b,c)

r ² Coe	ef Det	DF Adj r ²	Fit Std Err	F-val		
0.999	8904741	0.9998711460	0.2934039071	82163.323904		
Parm	Value	Std Error	t-value	95% Confidence	Limits	P> t
а	-58.902858	37 2.564773307	-22.9661072	-64.2912474	-53.5144699	0.00000
b	67.702967	60 2.422446246	27.94818160	62.61359689	72.79233831	0.00000
С	-6.3475311	2				

14.D.27. Die Durchlassspannung einer 1000 μm dicken Diode als Funktion der Goldkonzentration.

x := 0, 0.01..6

 $f_{xx}(x) := -0.63732961 + 1.851484130 \cdot \exp\left(\frac{x}{7.81178439}\right)$ n := 1.65 wurzel(f(n) - 1.65, n) = 1.6514 f(1.7) = 1.66430 1.225 1 1.458 1.7 1.658 1.75 2 a := 3 2.083 4 2.459 2.88 5 6 3.348 3.4 3.2 U_F/∖ 3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 ${}^{1}_{0}$ 2 1 3 4 5 6 $N_{AU}^{*10^{-12}}$ cm⁻³

14.D.28. Dotierungsprofile Vierschichtdiode

$$10^{19} \cdot \operatorname{erfc}\left(\frac{15 \cdot 10^{-4}}{XA}\right) = 10^{13} \quad 10^{19} \cdot \operatorname{erfc}\left(\frac{15 \cdot 10^{-4}}{XA}\right) - 10^{13} = 0 \quad XA := \frac{15}{3.7} \cdot 10^{-4} = 4.0541 \times 10^{-4}$$
$$\operatorname{erfc}(3.7) = 1.6715 \times 10^{-7} \quad \operatorname{wurzel}\left(10^{20} \cdot \operatorname{erfc}\left(\frac{15 \cdot 10^{-4}}{XA}\right) - 1.42 \cdot 10^{13}, XA\right) = 4.0309 \times 10^{-4}$$
$$10^{18} \cdot \operatorname{erfc}\left(\frac{22 \cdot 10^{-4}}{XB}\right) = 10^{13} \quad 10^{18} \cdot \operatorname{erfc}\left(\frac{22 \cdot 10^{-4}}{XB}\right) - 10^{13} = 0 \quad XB := \frac{15}{3.12} \cdot 10^{-4} = 4.8077 \times 10^{-4}$$
$$\operatorname{erfc}(3.12) = 1.0226 \times 10^{-5} \quad \operatorname{wurzel}\left(10^{18} \cdot \operatorname{erfc}\left(\frac{22 \cdot 10^{-4}}{XB}\right) - 1.42 \cdot 10^{13}, XB\right) = 7.1676 \times 10^{-4}$$
$$10^{16} \cdot \operatorname{erfc}\left(\frac{36 \cdot 10^{-4}}{XC}\right) = 10^{13} \quad 10^{16} \cdot \operatorname{erfc}\left(\frac{36 \cdot 10^{-4}}{XC}\right) - 10^{13} = 0 \quad XC := \frac{15}{2.21} \cdot 10^{-4} = 6.7873 \times 10^{-4}$$
$$\operatorname{erfc}(2.32) = 1.0345 \times 10^{-3} \quad \operatorname{wurzel}\left(10^{16} \cdot \operatorname{erfc}\left(\frac{36 \cdot 10^{-4}}{XC}\right) - 1.42 \cdot 10^{13}, XC\right) = 1.5957 \times 10^{-3}$$
$$\operatorname{fl}_{M}(x) := 10^{20} \cdot \operatorname{erfc}\left(\frac{x}{4.0309 \times 10^{-4}}\right) \quad \operatorname{fl}_{M}(x) := 10^{18} \cdot \operatorname{erfc}\left(\frac{x}{7.1676 \times 10^{-4}}\right) \quad f^{3}(x) := 10^{16} \cdot \operatorname{erfc}\left(\frac{x}{1.5957 \times 10^{-3}}\right)$$
$$x := 0, 1 \cdot 10^{-4} \cdot 45 \cdot 10^{-4}$$

14.D.29. Dotierungsprofile

Exp

$$\begin{split} \mathrm{N}_{\mathrm{A}} &= \mathrm{N}_{\mathrm{Amax}} \cdot \exp\!\left(\frac{-\mathrm{d}_{\mathrm{p}}}{\mathrm{X}_{\mathrm{A0}}}\right) \quad \mathrm{N}_{\mathrm{Amax}} \cdot \exp\!\left(\frac{-\mathrm{d}_{\mathrm{p}}}{\mathrm{X}_{\mathrm{A0}}}\right) - \mathrm{N}_{\mathrm{Dmin}} = 0 \quad \mathrm{X}_{\mathrm{A0}} = \frac{\mathrm{d}_{\mathrm{p}}}{\ln\!\left(\frac{\mathrm{N}_{\mathrm{Amax}}}{\mathrm{N}_{\mathrm{Dmin}}}\right)} \\ \mathrm{N}_{\mathrm{D}} &= \mathrm{N}_{\mathrm{Dmin}} + \left(\mathrm{N}_{\mathrm{Dmax}} - \mathrm{N}_{\mathrm{Dmin}}\right) \cdot \exp\!\left(\frac{-\mathrm{d}_{\mathrm{n}}}{\mathrm{X}_{\mathrm{D0}}}\right) \quad \mathrm{N}_{\mathrm{Dmin}} + \left(\mathrm{N}_{\mathrm{Dmax}} - \mathrm{N}_{\mathrm{Dmin}}\right) \cdot \exp\!\left(\frac{-\mathrm{d}_{\mathrm{n}}}{\mathrm{X}_{\mathrm{D0}}}\right) - 2\mathrm{N}_{\mathrm{Dmin}} = 0 \quad \mathrm{X}_{\mathrm{D0}} = \frac{\mathrm{d}_{\mathrm{n}}}{\ln\!\left(\frac{\mathrm{N}_{\mathrm{Dmax}}}{\mathrm{N}_{\mathrm{Dmin}}} - 1\right)} \end{split}$$

Der 1 wurde vernachlässigt

Gauss1

$$X_{A0} = \frac{d_p^2}{\ln\left(\frac{N_{Amax}}{N_{Dmin}}\right)} \quad N_A = N_{Amax} \cdot \exp\left(\frac{-d_p^2}{X_{A0}}\right) \quad N_{Amax} \cdot \exp\left(\frac{-d_p^2}{X_{A0}}\right) - N_{Dmin} = 0$$

$$N_{D} = N_{Dmin} + \left(N_{Dmax} - N_{Dmin}\right) \cdot exp \left(\frac{-d_{n}^{2}}{X_{D0}}\right) \\ N_{Dmin} + \left(N_{Dmax} - N_{Dmin}\right) \cdot exp \left(\frac{-d_{n}^{2}}{X_{D0}}\right) - 2N_{Dmin} = 0 \\ X_{D0} = \frac{d_{n}^{2}}{\ln\left(\frac{N_{Dmax}}{N_{Dmin}} - 1\right)} + \frac{1}{\ln\left(\frac{N_{Dmax}}{N_{Dmin}} -$$

Der 1 wurde vernachlässigt

Gauss2; nicht programmiert

$$\begin{split} X_{A0} &= \frac{d_p}{\sqrt{\ln\left(\frac{N_{Dmax}}{N_{Amin}}\right)}} \quad N_A = N_{Amax} \cdot \exp\left[-\left(\frac{d_p}{X_{A0}}\right)^2\right] \quad N_{Amax} \cdot \exp\left[-\left(\frac{d_p}{X_{A0}}\right)^2\right] - N_{Dmin} = 0 \\ N_D &= N_{Dmin} + \left(N_{Dmax} - N_{Dmin}\right) \cdot \exp\left[-\left(\frac{d_n}{X_{D0}}\right)^2\right] \\ N_{Dmin} &+ \left(N_{Dmax} - N_{Dmin}\right) \cdot \exp\left[-\left(\frac{d_n}{X_{D0}}\right)^2\right] - 2N_{Dmin} = 0 \quad X_{D0} = \frac{d_n}{\sqrt{\ln\left(\frac{N_{Dmax}}{N_{Dmin}} - 1\right)}} \end{split}$$

14.D.30. 9 x 9 Matrix leer

•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	٠	•	•		•		•
•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•		•		•
•	•	•	•	٠	•	•	•	•		•		•	٠	•	•	•	•	٠	•	•		•		•
•	•	•	•	٠	•	•	•	•		•		•	•	•	•	•	•	•	•	•		•		•
•	•	•	•	٠	•	•	•	•	x	•	+	•	•	•	•	•	•	•	•	•	X	•	=	•
•	•	•	•	٠	•	•	•	•		•		•	٠	•	•	•	•	•	•	•		•		•
•	•	•	•	٠	•	•	•	•		•		•	٠	•	•	•	•	•	•	•		•		•
•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•		•		•
•	•	•	•	٠	•	•	•	•		•		•	•	•	•	•	•	•	•	•		•		•

14.D.31. Hochinjektionslebensdauer von Gold in µs als Funktion der Temperatur in °C.

 $N_AU = 10^{12} \text{ cm}^{-3}$

$$f_{\text{c}}(x) := -66.2455232 + 130.4247620 \cdot e^{\frac{-x}{-535.473126}}$$

x := -40, -39..200

x1 := 0,20..600 x2 := 0,4..136 x4 := 138,139..570

	136.3254893794	0.258523484							
	136.8294460641	2.3040929761							
	137.3771345273	6.1305579215							
	138	8.8593							
	141.4014993753	29.8538261892							
	146.6284881299	53.0884444231							
	156.5191586839	97.1627951577							
	171.0766347355	167.8804018123							
	192.0605997501	205.3525026457							
	212.4843815077	133.3521432163							
	225.9183673469	70.7945784384							
	242.8488129946	39.8107170553							
	260.3488129946	32.5461783498							
	279.0056226572	34.4746606573							
	279.5876718034	35.4813389234							
p :=	291.830487297	37.5837404288							
	309.3263223657	34.4746606573							
	326.8221574344	31.6227766017							
	346.6493127863	29.8538261892							
	368.8098708871	27.3841963426							
	390.3873386089	25.1188643151							
	410.2144939609	23.7137370566							
	430.0437317784	21.1348903984							
	448.706788838	18.8364908949							
	466.7867555185	16.7880401812							
	487.1970012495	15.8489319246							
	507.0231153686	15.3992652606							
	525.0999583507	14.9623565609							
	541.4306538942	13.3352143216							
	556.5951686797	11.8850222744							
	570.0062473969	11.8850222744)							
y := 1	$y := kgltt(p^{(1)}, p^{(2)}, 2)$								

 $\underset{\text{All}}{\underline{S}} \coloneqq kspline \begin{pmatrix} p^{\left< 1 \right>}, y \end{pmatrix} \quad fit(x4) \coloneqq interp \begin{pmatrix} S, p^{\left< 1 \right>}, y, x4 \end{pmatrix}$

p := submatrix(p, 1, 4, 1, 2)

14.D.32. Beispiel von dem Widerstandsverlauf eines Schalttransistors während eines Einschaltvorganges.

14.D.33. Berechnung von DTMIN aus den Stromgleichungen

$$\begin{split} \frac{d}{dt} E &= \frac{1}{\varepsilon_0 \cdot \varepsilon_r} \cdot (j - j_p - j_n) \quad j_p = e \cdot \mu_p \cdot p \cdot E - k \cdot T \cdot \mu_p \cdot \frac{d}{dx} p \quad j_n = e \cdot \mu_n \cdot n \cdot E + k \cdot T \cdot \mu_n \cdot \frac{d}{dx} n \\ \frac{dE}{dt} &= \frac{1}{\varepsilon_0 \cdot \varepsilon_r} \cdot \left(j + k \cdot T \left(\mu_p \cdot \frac{dp}{dx} - \mu_n \cdot \frac{dn}{dx} \right) \right) - \frac{1}{(\varepsilon_0 \cdot \varepsilon_r)} \cdot e \cdot \left(n \cdot \mu_n + p \cdot \mu_p \right) \cdot E \\ A &= \frac{1}{\varepsilon_0 \cdot \varepsilon_r} \cdot \left(j + k \cdot T \left(\mu_p \cdot \frac{dp}{dx} - \mu_n \cdot \frac{dn}{dx} \right) \right) \quad B = \frac{1}{(\varepsilon_0 \cdot \varepsilon_r)} \cdot e \cdot \left(n \cdot \mu_n + p \cdot \mu_p \right) \\ \frac{d}{dt} E &= A - B \cdot E(t) \text{ Wenn alle Parameter konstant sind: } E = E_0 + \left(\frac{A}{B} - E_0 \right) \cdot \left(1 - e^{-B \cdot t} \right) \\ Zeitkonstante &= \tau = \frac{1}{B} \quad \tau = \frac{\varepsilon_0 \cdot \varepsilon_r}{e} \cdot \frac{1}{(n \cdot \mu_n + p \cdot \mu_p)} \\ YDTMIN &= \frac{\varepsilon_0 \cdot \varepsilon_r}{e} \cdot \frac{1}{DIMT} \cdot \frac{1}{DIMN} \cdot \frac{1}{(n \cdot \mu_n + p \cdot \mu_p)} \\ YDTMIN &= \frac{\varepsilon_0 \cdot \varepsilon_r}{e} \cdot \frac{1}{DIMT} \cdot \frac{1}{DIMN} \cdot \frac{1}{[(YN(L - 1) + YN(L)) \cdot \mu_n + (YP(L - 1) + YP(L)) \cdot \mu_p]} \\ Vereinfacht: \qquad bei TEMP0 \end{split}$$

 $\text{YDTMIN} \sim \ \frac{\text{EPS}}{\text{E}} \cdot \frac{1}{\text{DIMT} \cdot \text{DIMN}} \cdot \frac{1}{\left(\mu_p + \mu_n\right)_{max}} \cdot \frac{1}{\text{DMAX1(YNA(L), YND(L), YRZ(L))}} \text{ für L=1...NMAX}$

14.D.34. Berechnung von dJDI/dUDIO wegen dJDI/dEFELD(L) = (dJDI/dUDIO)*DX(L)

$$\frac{dUDIO}{dEFELD(L)} = DX(L)$$

$$JDI = \frac{IDI}{AQUER} = \frac{IL}{AQUER} - \frac{IC}{AQUER}$$

$$\frac{d}{dt}u_{C} = \frac{U_{DIO} - U_{C0}}{\left(\frac{R \cdot C}{DIMT}\right)} = F0 \cdot U_{C0} + F1 \cdot U_{c1} + F2 \cdot U_{c2}$$

$$U_{C0} = \frac{\left(U_{DIO} - F12 \cdot U_{c2} - F11 \cdot U_{c1}\right)}{1 + F10} \quad F10 = F0 \cdot \frac{R \cdot C}{DIMT} \text{ usw.}$$

$$L_{C0} = \frac{U_{DIO} - U_{C}}{1 + F10} = \frac{1}{2} \cdot \left(1 - \frac{1}{2}\right) - \frac{1}{2} \cdot \frac{F10}{10} = F0$$

$$I_{C} = \frac{O_{DIO} - O_{C}}{R} \quad \frac{dIC}{dUDIO} = \frac{1}{R} \cdot \left(1 - \frac{1}{1 + F10}\right) = \frac{1}{R} \cdot \frac{F10}{1 + F10} = DICDU$$

<u>Linear</u>

$$IL = \frac{-F1 \cdot IL1 - F2 \cdot IL2 - DIMT \cdot \frac{UD + UDIO}{LS}}{F0}$$
$$LS = L1 + L0$$

$$\frac{dIL}{dUDIO} = -\frac{DIMT}{F0 \cdot LS} = DILDU$$

Nicht linear

$$ILNEU = \frac{-F1 \cdot IL1 - F2 \cdot IL2 - DIMT \cdot \frac{UD + UDIO}{L1 + LST}}{F0} \text{ LST} = L0 \cdot \frac{IST^2}{(IL + IK)^2}$$

Iterative Lösung von IL

$$\frac{\text{dJDI}}{\text{dEFELD}(L)} = \frac{\text{DX}(L)}{\text{AQUER}} \cdot (\text{DILDU} - \text{DICDU})$$

Im nicht linearen Fall wird dIL/dUDIO iterativ berechnet

$$dILDU = \frac{IL(UDIO + \Delta UDIO) - IL(UDIO)}{\Delta UDIO}$$
$$\Delta UDIO = A2 = FEHL1 \cdot DMAX1 \left(10^{-5}, \frac{-|IL|}{DILDU}, |UD + UDIO| \right)$$
$$FEHL1 = 10^{-8} \quad \frac{-|IL|}{DILDU} = \frac{|IL| \cdot LS \cdot F0}{DIMT}$$

14.D.35. Berechnung von j_{pi} und j_{ni}

$$CE_{i} = \frac{k \cdot T}{e \cdot dx_{i}} \sum_{==>} z = \frac{E_{i}}{CE_{i}}$$

$$j_{pi} = \mu_{p} \cdot \frac{k \cdot T \cdot DIMN}{dx_{i}} \cdot \frac{z}{e^{z} - 1} \cdot \left(p_{i-1} \cdot e^{z} - p_{i}\right)$$

$$j_{ni} = \mu_{n} \cdot \frac{k \cdot T \cdot DIMN}{dx_{i}} \cdot \frac{z}{e^{z} - 1} \cdot \left(n_{i} \cdot e^{z} - n_{i-1}\right)$$

mit

$$\begin{split} \frac{\mathbf{k} \cdot \mathbf{T} \cdot \mathbf{DIMN}}{dx_{i}} &= ZNC \quad \frac{z}{e^{Z} - 1} = ZP1(L) \quad ZP2(L) = ZP1(L) \cdot e^{Z} \quad H55 = \mathbf{k} \cdot \mathbf{TEMP0} \cdot \mathbf{DIMN} \quad ZNC = \frac{H55}{DX(L)} \text{ in ANF} \\ j_{ni} &= 0 \quad z = \ln\left(\frac{n_{i-1}}{n_{i}}\right)_{==>} E_{i} = \frac{\mathbf{k} \cdot \mathbf{T}}{e} \cdot \frac{1}{dx_{i}} \cdot \ln\left(\frac{n_{i-1}}{n_{i}}\right) = CE_{i} \cdot \ln\left(\frac{n_{i-1}}{n_{i}}\right)_{in \text{ UP-NULLW}} \\ \frac{d}{dn_{1}} \ln\left(\frac{n_{1}}{n_{2}}\right) \rightarrow \frac{1}{n_{1}} \quad \frac{d}{dn_{2}} \ln\left(\frac{n_{1}}{n_{2}}\right) \rightarrow -\frac{1}{n_{2}} \\ p_{i} &= \left(e^{i}E_{i} - \frac{1}{2} \cdot \mathbf{k} \cdot \frac{d\mathbf{T}}{dx_{i}}\right) \cdot \frac{dx_{i}}{\mathbf{k} \cdot \mathbf{T}} = E_{i} \cdot dx_{i} \cdot \frac{e}{\mathbf{k} \cdot \mathbf{T}} - \frac{T_{i} - T_{i-1}}{T_{i} + T_{i-1}} = ZP \\ p_{i} &= \left(\frac{E_{i}}{E_{i}} + \frac{T_{i} - T_{i-1}}{T_{i} + T_{i-1}} = ZN \\ &= \frac{E_{i}}{CE_{i}} + \frac{T_{i} - T_{i-1}}{T_{i} + T_{i-1}} = ZN \\ in \text{ UP-UPDATE} \\ in UP-UPDATE \\ i_{pi} &= \mu_{pi} \left(ZP2_{i} \cdot \mathbf{p}_{i-1} - ZP1_{i} \cdot \mathbf{p}_{i}\right) \quad j_{ni} = \mu_{ni} \left(ZN2_{i} \cdot n_{i} - ZN1_{i} \cdot n_{i-1}\right) in \text{ UP-UPDATE} \end{split}$$

14.D.36. EFELD-Berechnung aus den Stromgleichungen in UP-ANF, Anfangsbedingungen

$$\begin{split} \boldsymbol{j} &= \boldsymbol{e} \cdot \left(\boldsymbol{\mu}_{p} \cdot \boldsymbol{p} + \boldsymbol{\mu}_{n} \cdot \boldsymbol{n} \right) \cdot \boldsymbol{E} + \boldsymbol{k} \cdot \boldsymbol{T} \cdot \frac{\left(\boldsymbol{\mu}_{n} \cdot \Delta \boldsymbol{n} - \boldsymbol{\mu}_{p} \cdot \Delta \boldsymbol{p} \right)}{\Delta \boldsymbol{x}} \\ \boldsymbol{E} &= \frac{\left[\boldsymbol{j} + \frac{\boldsymbol{T} \cdot \boldsymbol{k} \cdot \left(\Delta \boldsymbol{p} \cdot \boldsymbol{\mu}_{p} - \Delta \boldsymbol{n} \cdot \boldsymbol{\mu}_{n} \right)}{\Delta \boldsymbol{x}} \right]}{\boldsymbol{e} \cdot \left(\boldsymbol{n} \cdot \boldsymbol{\mu}_{n} + \boldsymbol{p} \cdot \boldsymbol{\mu}_{p} \right)} \\ \boldsymbol{T}, \ \boldsymbol{\mu}_{p}, \ \boldsymbol{\mu}_{n}, \ \boldsymbol{n} \ \text{und} \ \boldsymbol{p} \ \text{sind hierbei} \ \text{Mittelwerte. Es folgt:} \end{split}$$

$$E_{i} = \frac{\left[JDI + k \cdot DIMN \cdot \left(\frac{T_{i} + T_{i-1}}{2}\right) \cdot \frac{MUP_{i} + MUP_{i-1}}{2} \cdot \left(YP_{i} - YP_{i-1}\right) - \frac{MUN_{i} + MUN_{i-1}}{2} \cdot \left(YN_{i} - YN_{i-1}\right)\right]}{DX_{i}}\right]$$

$$e \cdot \left(\frac{MUP_{i} + MUP_{i-1}}{2} \cdot \frac{YP_{i} + YP_{i-1}}{2} + \frac{MUN_{i} + MUN_{i-1}}{2} \cdot \frac{YN_{i} + YN_{i-1}}{2}\right) \cdot DIMN$$

mit $\frac{1}{2} \cdot E \cdot DIMN = H11$ K·DIMN·TEMP0 = H55

14.D.37. Berechnung von Δn und Δp für UP-ANF

Ausgangsgleichung: JDI-JN-JP=konst. ==> JN+JP=Konst. Wie ändert sich E, wenn sich YN ändert? ==> $\Delta E=f(\Delta n)$

$$(\mathbf{YP} + \mathbf{YN} + \Delta \mathbf{N}) \cdot \left(\mathbf{ZN2} + \Delta \mathbf{E} \cdot \frac{\mathbf{d}}{\mathbf{dE}} \mathbf{ZN2} \right) - \left(\mathbf{YP} + \mathbf{YN}_{L-1} \right) \cdot \left(\mathbf{ZN1} + \Delta \mathbf{E} \cdot \frac{\mathbf{d}}{\mathbf{dE}} \mathbf{ZN1} \right) = \left(\mathbf{YP}_1 + \mathbf{YN} \right) \cdot \mathbf{ZN2} - \left(\mathbf{YP} + \mathbf{YN}_1 \right) \cdot \mathbf{ZN1} + \mathbf{ZN1} \cdot \mathbf{ZN1} = \left(\mathbf{YP}_1 + \mathbf{YN} \right) \cdot \mathbf{ZN2} - \left(\mathbf{YP} + \mathbf{YN}_1 \right) \cdot \mathbf{ZN1} + \mathbf{ZN1} \cdot \mathbf{ZN1} = \left(\mathbf{YP}_1 + \mathbf{YN} \right) \cdot \mathbf{ZN2} - \left(\mathbf{YP} + \mathbf{YN}_1 \right) \cdot \mathbf{ZN1} + \mathbf{ZN1} \cdot \mathbf{ZN1} = \left(\mathbf{YP}_1 + \mathbf{YN} \right) \cdot \mathbf{ZN2} - \left(\mathbf{YP} + \mathbf{YN}_1 \right) \cdot \mathbf{ZN1} + \mathbf{ZN1} \cdot \mathbf{ZN1} = \left(\mathbf{YP}_1 + \mathbf{YN} \right) \cdot \mathbf{ZN2} - \left(\mathbf{YP} + \mathbf{YN}_1 \right) \cdot \mathbf{ZN1} + \mathbf{ZN1} \cdot \mathbf{ZN1} = \left(\mathbf{YP}_1 + \mathbf{YN} \right) \cdot \mathbf{ZN2} - \left(\mathbf{YP} + \mathbf{YN}_1 \right) \cdot \mathbf{ZN1} + \mathbf{ZN1} \cdot \mathbf{ZN1} = \left(\mathbf{YP}_1 + \mathbf{YN} \right) \cdot \mathbf{ZN2} - \left(\mathbf{YP} + \mathbf{YN}_1 \right) \cdot \mathbf{ZN1} + \mathbf{ZN1} \cdot \mathbf{ZN1} = \left(\mathbf{YP}_1 + \mathbf{YN} \right) \cdot \mathbf{ZN2} - \left(\mathbf{YP} + \mathbf{YN}_1 \right) \cdot \mathbf{ZN1} + \mathbf{ZN1} \mathbf{ZN1}$$

Einfluss von ΔN auf μ wurde vernachlässigt. Index L wurde weggelassen

$$\begin{split} \Delta N \cdot ZN2 &+ \left(YP_{L-1} + YN \right) \cdot \Delta E \cdot \frac{d}{dE} ZN2 + \Delta N \cdot \Delta E \cdot \frac{d}{dE} ZN2 = \left(YP + YN_{L-1} \right) \cdot \Delta E \cdot \frac{d}{dE} ZN1 \\ \Delta N &= \frac{\left(YP + YN_{L-1} \right) \cdot \Delta E \cdot \frac{d}{dE} ZN1 - \left(YP_{L-1} + YN \right) \cdot \Delta E \cdot \frac{d}{dE} ZN2}{ZN2 + \Delta E \cdot \frac{d}{dE} ZN2} \end{split}$$

 ΔE ist immer negativ. Gleichung bezogen auf YN(L)+YP(L)

$$\left(\mathbf{YP}_{L+1} + \mathbf{YN} + \Delta \mathbf{N} \right) \cdot \left(\mathbf{ZN1} + \Delta \mathbf{E} \cdot \frac{\mathbf{d}}{\mathbf{dE}} \mathbf{ZN1} \right) - \left(\mathbf{YP} + \mathbf{YN}_{L+1} \right) \cdot \left(\mathbf{ZN2} + \Delta \mathbf{E} \cdot \frac{\mathbf{d}}{\mathbf{dE}} \mathbf{ZN2} \right) = \left(\mathbf{YP}_{L+1} + \mathbf{YN} \right) \cdot \mathbf{ZN1} - \left(\mathbf{YP} + \mathbf{YN}_{L+1} \right) \cdot \mathbf{ZN2}$$

$$\Delta \mathbf{N} = \frac{\left(\mathbf{YP} + \mathbf{YN}_{L+1} \right) \cdot \Delta \mathbf{E} \cdot \frac{\mathbf{d}}{\mathbf{dE}} \mathbf{ZN2} - \left(\mathbf{YP}_{L+1} + \mathbf{YN} \right) \cdot \Delta \mathbf{E} \cdot \frac{\mathbf{d}}{\mathbf{dE}} \mathbf{ZN1} }{\mathbf{ZN1} + \Delta \mathbf{E} \cdot \frac{\mathbf{d}}{\mathbf{dE}} \mathbf{ZN1} }$$

 ΔE ist immer positiv. Gleichung bezogen auf YN(L+1)+YP(L+1) und bezogen auf JN+JP folgt:

$$\Delta N = \frac{-\left[\left(YP + YN_{L-1}\right) \cdot \frac{d}{dE}ZN1 + \left(YP_{L-1} + YN\right) \cdot \frac{d}{dE}ZN2\right] \cdot \Delta E}{ZN1 + \Delta E \cdot \frac{d}{dE}ZN1}$$

wobei:

$$A0 = (YP + YN_{L-1}) \cdot \frac{d}{dE} ZN1 + (YP_{L-1} + YN) \cdot \frac{d}{dE} ZN2$$
 ist immer positiv

 $ZN1 + \Delta E \cdot \frac{d}{dE} ZN1$ ist immer positiv

$$\frac{d}{dE}ZN1 = DZN1DZ \cdot \frac{DZ}{DE} = \frac{DZN1DZ}{CE(L)} \frac{d}{bzw} \frac{d}{dE}ZN2 = DZN2DZ \cdot \frac{DZ}{DE} = \frac{DZN2DZ}{CE(L)} \frac{DZ}{CE(L)} \frac{d}{DE}ZN2DZ \cdot \frac{DZ}{DE} = \frac{DZN2DZ}{CE(L)} \frac{d}{DE}ZN2DZ \cdot \frac{DZ}{DE} = \frac{DZN2DZ}{CE(L)} \frac{d}{DE}ZN2DZ \cdot \frac{DZ}{DE}ZN2DZ \cdot \frac{DZ}{DZ} \cdot \frac{DZ}{DZ}$$

14.D.38. Berechnung von $\Delta j_n = f(\Delta E)$

$$j_{n} = \mu_{n} \cdot ZNC \cdot \left[\left(ZN2 + \Delta E \cdot \frac{d}{dE} ZN2 \right) \cdot (YN + \Delta N) - \left(ZN1 + \Delta E \cdot \frac{d}{dE} ZN1 \right) \cdot YN_{L-1} \right]$$

 $j_n = \mu_n \cdot ZNC \cdot (ZN2 \cdot YN - ZN1 \cdot YN_{L-1})$ Die Subtraktion liefert:

$$\Delta \mathbf{j}_{n} = \mu_{n} \cdot Z \mathbf{N} \mathbf{C} \cdot \left(\mathbf{Y} \mathbf{N} \cdot \Delta \mathbf{E} \cdot \frac{\mathbf{d}}{\mathbf{d} \mathbf{E}} Z \mathbf{N} \mathbf{2} + \Delta \mathbf{N} \cdot Z \mathbf{N} \mathbf{2} + \Delta \mathbf{N} \cdot \Delta \mathbf{E} \cdot \frac{\mathbf{d}}{\mathbf{d} \mathbf{E}} Z \mathbf{N} \mathbf{2} - \Delta \mathbf{E} \cdot \frac{\mathbf{d}}{\mathbf{d} \mathbf{E}} Z \mathbf{N} \mathbf{1} \cdot \mathbf{Y} \mathbf{N}_{L-1} \right)$$

Hierin kann wieder $\Delta n=f(\Delta E)$ eingesetzt werden. Diese Gleichung wird nicht weiter benutzt. Vereinfachung in oben stehenden Gleichungen: $\mu_p = \mu_n$ und ZP=ZN!

14.D.39. Berechnung der Dotierungsbesetzungen in UP-UPDATE (Dynamik)

1. Donator

 $\mathbf{r}_{p} \cdot \mathbf{N}_{D} \cdot \mathbf{p} + \mathbf{r}_{n} \cdot \mathbf{N}_{D} \cdot \mathbf{K}_{DC} - \mathbf{N}_{D,plus} \cdot \left[\mathbf{r}_{p} \cdot \left(\mathbf{p} + \mathbf{K}_{DV} \right) + \mathbf{r}_{n} \cdot \left(\mathbf{n} + \mathbf{K}_{DC} \right) \right] = \frac{\delta \mathbf{N}_{D,plus}}{\kappa_{t}} = \alpha + F_{0} \cdot \mathbf{N}_{D,plus}$ $\mathbf{r}_{p} \cdot \mathbf{N}_{A} \cdot \mathbf{K}_{AV} + \mathbf{r}_{n} \cdot \mathbf{N}_{A} \cdot \mathbf{n} - \mathbf{N}_{A.minus} \cdot \left[\mathbf{r}_{p} \cdot \left(\mathbf{p} + \mathbf{K}_{AV} \right) + \mathbf{r}_{n} \cdot \left(\mathbf{n} + \mathbf{K}_{AC} \right) \right] = \frac{\delta \mathbf{N}_{A.minus}}{\delta t} = \alpha + F_{0} \cdot \mathbf{N}_{A.minus} \tag{Akzeptor}$ $\alpha = F_1 \cdot U_1 + F_2 \cdot U_2 \quad U_1 = \text{YDON}(L, 1) \quad U_2 = \text{YDON}(L, 2)$

 $\mathbf{f} = \mathbf{a} + \mathbf{b} \cdot \mathbf{t} \quad \mathbf{a} = \mathbf{U}_1 \quad \mathbf{b} = \frac{\mathbf{U}_0 - \mathbf{U}_1}{\mathbf{v} \mathbf{T}}$ $f = U_1 + \frac{U_0 - U_1}{VT} \cdot t$ $\frac{d}{dt}f = \frac{U_0 - U_1}{VT} = \frac{U_0}{VT} - \frac{U_1}{VT}$

Zur Zeitintegration beim ersten und zweiten Zeitschritt

$$\mathrm{YN}_{\mathrm{D,plus}} = \frac{\left[\mathrm{YN}_{\mathrm{D}} \cdot \left(\mathbf{r}_{\mathrm{p}} \cdot \mathrm{YP} + \mathbf{r}_{\mathrm{n}} \cdot \mathrm{YK}_{\mathrm{DC}}\right) - \left(\mathrm{F}_{1} \cdot \mathrm{YU}_{1} + \mathrm{F}_{2} \cdot \mathrm{YU}_{2}\right) \cdot \frac{1}{\mathrm{DIMT} \cdot \mathrm{DIMN}}\right]}{\left[\frac{\mathrm{F}_{0}}{\mathrm{DIMT} \cdot \mathrm{DIMN}} + \left[\mathbf{r}_{\mathrm{p}} \cdot \left(\mathrm{YP} + \mathrm{YK}_{\mathrm{DV}}\right) + \mathbf{r}_{\mathrm{n}} \cdot \left(\mathrm{YN} + \mathrm{YK}_{\mathrm{DC}}\right)\right]\right]}$$

mit DIMN*DIMT=H10 F20 = $F_0/(DIMN*DIMT)$ usw.

$$\text{YNDP}(L) = \frac{[\text{YND}(L) \cdot (\text{RPDON}(L) \cdot \text{YP}(L) + \text{RNDON}(L) \cdot \text{YKDCDO}(L)) - (\text{F21} \cdot \text{YDON}(L, 1) + \text{F22} \cdot \text{YDON}(L, 2))]}{[\text{F20} + \text{RPDON}(L) \cdot (\text{YP}(L) + \text{YKDVDO}(L)) + \text{RNDON}(L) \cdot (\text{YN}(L) + \text{YKDCDO}(L))]}$$

2. Akzeptor

$$N_{A.minus} = \frac{\left[N_{A} \cdot (\mathbf{r}_{p} \cdot K_{AV} + \mathbf{r}_{n} \cdot \mathbf{n}) - (F_{1} \cdot U_{1} + F_{2} \cdot U_{2})\right]}{\left[F_{0} + \left[\mathbf{r}_{p} \cdot (\mathbf{p} + K_{AV}) + \mathbf{r}_{n} \cdot (\mathbf{n} + K_{AC})\right]\right]}$$

$$\text{YNAN}(L) = \frac{[\text{YNA}(L) \cdot (\text{RPAKZ}(L) \cdot \text{YKAVAK}(L) + \text{RNAKZ}(L) \cdot \text{YN}(L)) - (\text{F21} \cdot \text{YAKZ}(L, 1) + \text{F22} \cdot \text{YAKZ}(L, 2))]}{[\text{F20} + \text{RPAKZ}(L) \cdot (\text{YP}(L) + \text{YKAVAK}(L)) + \text{RNAKZ}(L) \cdot (\text{YN}(L) + \text{YKACAK}(L))]}$$

3. Rekombinationszentrum

$$\begin{split} A1\cdot N_{\text{plus}} + B1\cdot N_{\text{minus}} &\equiv D1 \quad (\delta N_{\text{R}}^{+}/\delta t) \quad N_{\text{plus}} = \frac{B2\cdot D1 - B1\cdot D2}{A1\cdot B2 - B1\cdot A2} \quad N_{\text{minus}} = \frac{A2\cdot D2 - A2\cdot D1}{A1\cdot B2 - B1\cdot A2} \\ A2\cdot N_{\text{plus}} + B2\cdot N_{\text{minus}} &\equiv D2 \quad (\delta N_{\text{R}}^{-}/\delta t) \\ A1 &\equiv F_{0} + \beta_{p} \left(p + K_{\text{DV}}\right) + \beta_{n} \left(n + K_{\text{DC}}\right) \\ B1 &= \beta_{p} \cdot p + \beta_{n} \cdot K_{\text{DC}} \\ D1 &= N_{\text{R}} \cdot \left(\beta_{p} \cdot p + \beta_{n} \cdot K_{\text{DC}}\right) - F_{1} \cdot U_{1,\text{plus}} - F_{2} \cdot U_{2,\text{plus}} = N_{\text{R}} \cdot B1 - \left(F_{1} \cdot U_{1,\text{plus}} + F_{2} \cdot U_{2,\text{plus}}\right) \\ A2 &= \alpha_{p} \cdot K_{\text{AV}} + \alpha_{n} \cdot n \\ B2 &= F_{0} + \alpha_{p} \left(p + K_{\text{AV}}\right) + \alpha_{n} \left(n + K_{\text{AC}}\right) \\ D2 &= N_{\text{R}} \cdot \left(\alpha_{p} \cdot K_{\text{AV}} + \alpha_{n} \cdot n\right) - F_{1} \cdot U_{1,\text{minus}} - F_{2} \cdot U_{2,\text{minus}} = N_{\text{R}} \cdot A2 - \left(F_{1} \cdot U_{1,\text{minus}} + F_{2} \cdot U_{2,\text{minus}}\right) \\ H10 &= \text{DIMN} \cdot \text{DIMT} \quad F20 &= \frac{F_{0}}{\text{DIMN} \cdot \text{DIMT}} \sim \frac{1}{\text{YT} \cdot \text{DIMT} \cdot \text{DIMN}} \\ D1M \left[\alpha\right] &= \text{DIM} \left[\beta\right] = \text{cm}^{3}/\text{s} \\ A1\cdot B2 - B1 \cdot A2 &= \left[F_{0} + \beta_{p} \cdot \left(p + K_{\text{DV}}\right) \dots\right] \left[F_{0} + \alpha_{p} \cdot \left(p + K_{\text{AV}}\right) \dots\right] - \left(\beta_{p} \cdot p + \beta_{n} \cdot K_{\text{DC}}\right) \cdot \left(\alpha_{p} \cdot K_{\text{AV}} + \alpha_{n} \cdot n\right) \\ &+ \left[\alpha_{p} \cdot \beta_{p} \cdot p^{2} + \alpha_{n} \cdot \beta_{n} \cdot \alpha_{n} \cdot \left(K_{\text{AC}} + n\right) + \alpha_{p} \cdot \left(K_{\text{AV}} + p\right) + \beta_{p} \cdot \left(K_{\text{DV}} + p\right)\right] \dots \\ &+ \left[\alpha_{p} \cdot \beta_{p} \cdot p^{2} + \alpha_{n} \cdot \beta_{n} \cdot \alpha_{n} \cdot \left(K_{\text{AC}} + n\right) + \alpha_{p} \cdot \left(K_{\text{AV}} + p\right) + \beta_{p} \cdot \left(K_{\text{DV}} + p\right)\right] \dots \\ &+ \left[\alpha_{p} \cdot \beta_{p} \cdot p^{2} + \alpha_{n} \cdot \beta_{n} \cdot n^{2} \dots \\ &+ \left[\kappa_{\text{AC}} \cdot \alpha_{p} \cdot \beta_{p} + K_{\text{DC}} \cdot \alpha_{p} \cdot \beta_{p} + K_{\text{DC}} \cdot \alpha_{p} \cdot \beta_{n} + n \cdot \alpha_{p} \cdot \beta_{n}\right] \end{pmatrix}$$

14.D.40. Verlustleistungsberechnung bei stationärem Vorwärtsstrom

$$U = \int E \, dx + U_{dif} \quad U_{dif} = -\int E_0 \, dx \quad U = \int (E - E_0) \, dx$$
$$P = U \cdot I = U \cdot j \cdot A = j \cdot A \cdot \int E \, dx - j \cdot A \cdot \int E_0 \, dx = j \cdot A \cdot \int E \, dx + j \cdot A \cdot U_{dif}$$
Erste Gleichung
NMAX

$$P = I \cdot U_{dif} + I \cdot \sum_{i=2}^{N \cdot M \cdot M \cdot K} (E_i dx_i) = (U \cdot I)_{stationär}$$

==

==

$$\mathbf{P} = \mathbf{A} \cdot \int \mathbf{E} \cdot \mathbf{j} \, d\mathbf{x} + \mathbf{A} \cdot \int \mathbf{e} \cdot \mathbf{R} \cdot \mathbf{E}_{g} \, d\mathbf{x} + \Delta \mathbf{P} = \mathbf{j} \cdot \mathbf{A} \cdot \int \mathbf{E} \, d\mathbf{x} + \mathbf{e} \cdot \mathbf{A} \cdot \mathbf{E}_{g} \cdot \int \mathbf{R} \, d\mathbf{x} + \Delta \mathbf{P}$$
(wenn E_g konstant)

$$R = R_n = \frac{1}{e} \cdot \frac{\delta j_n}{\delta x} \quad (\text{statiomär}) \quad R_p = \frac{-1}{e} \cdot \frac{\delta j_p}{\delta x} \quad (\text{statiomär})$$

$$P = j \cdot A \cdot \int E \, dx + A \cdot E_g \cdot \int \frac{\delta j_n}{\delta x} \, dx + \Delta P \quad \int \frac{\delta j_n}{\delta x} \, dx = j$$

$$\mathbf{P} = \mathbf{j} \cdot \mathbf{A} \cdot \int \mathbf{E} \, d\mathbf{x} + \mathbf{j} \cdot \mathbf{A} \cdot \mathbf{E}_{g} + \Delta \mathbf{P}$$

mit i=j*A Zweite Gleichung

Gleichung 1 = Gleichung 2 wenn $j\Delta E_g + \Delta P = j^*A^*U_{dif}$

 ΔP = Verluste an den Metall-Si-Übergänge

Im thermischen Gleichgewicht ist die Spannung über die Al-Anschlüsse 0 V.

==> Die Potentialsprünge an den Al-Si-Übergänge sind insgesamt gleich an +U_{dif} vom Si wenn:

** Zur Berechnung der Spannungen und Ströme braucht U_{dif} nur hier berücksichtigt zu werden!

Bei Mehrschichten mit mehr Anschlüsse gibt es für jeden Anschluss ein "U_{dif}", welches dort bei der Spannungs- und Stromberechnung berücksichtigt werden muss. Ein Punkt kann geerdet werden. (Siehe Diode).

==> Verluste am Metall-p⁺-Übergang: -i^{*}(E_F - E_V)_I ==> kühlt ab bei Vorwärtsstrom wenn (E_F - E_V)>0! ==> Verluste am Metall-n⁺-Übergang: -i^{*}(E_C - E_F)_r ==> kühlt ab bei Vorwärtsstrom wenn (E_C - E_F)>0!

Mit BGN

Verluste an den Metall-Si-Übergänge wie oben.

Verlustquellen im Si mit BGN:

und am Rand: $-j_{p_1} \cdot (E_F - E_V)_1 - j_{n_{(NMAX+1)}} \cdot (E_C - E_F)_{NMAX}$ wenn $j_{n_1} = j_{p_{(NMAX+1)}} = 0$

kein BGN: Berechnung von Udif:

$$U_{dif} = \left(E_{F} - E_{V}\right)_{r} - \left(E_{F} - E_{V}\right)_{1} = \frac{k \cdot T}{e} \cdot \left(ln \left(\frac{p_{1}}{N_{V}}\right) - ln \left(\frac{p_{r}}{N_{V}}\right)\right) = \frac{k \cdot T}{e} \cdot ln \left(\frac{p_{1}}{p_{r}}\right) = \frac{k \cdot T}{e} \cdot ln \left(\frac{n_{r}}{n_{1}}\right)$$

$$E_{i} = \frac{k \cdot T}{e \cdot dx_{i}} \cdot \ln \left(\frac{n_{i-1}}{n_{i}} \right) \quad U_{dif} = -\sum_{i} \left[\left(\frac{E_{i} + E_{i-1}}{2} \right) \cdot \left(\frac{DX_{i} + DX_{i-1}}{2} \right) \right]$$
nicht zulässig

Damit beim ungleichmäßigen Diskretisierungsraster gilt:

$$U_{dif} = \int E_{i} dx = \frac{k \cdot T}{e} \cdot ln \left(\frac{n_{r}}{n_{l}} \right)$$

muss wie folgt integriert werden:

$$U_{dif} = -\sum_{i=2}^{NMAX} \left(E_i \cdot dx_i \right) = -\frac{k \cdot T}{e} \cdot ln \left(\frac{n_1}{n_{NMAX}} \right) = \frac{k \cdot T}{e} \cdot ln \left(\frac{n_r}{n_l} \right)$$

==> nur summieren über den Zwischengitterpunkten 2 bis NMAX

Verlustleistung j*E, j und E konstant zwischen zwei Zwischengitterpunkte! T muss konstant sein!

$$\mathbf{E}_{\mathbf{C}} - \mathbf{E}_{\mathbf{F}} = -\frac{\mathbf{k} \cdot \mathbf{T}}{\mathbf{e}} \cdot \ln \left(\frac{\mathbf{n}}{\mathbf{N}_{\mathbf{C}}} \right) \quad \mathbf{E}_{\mathbf{F}} - \mathbf{E}_{\mathbf{V}} = -\frac{\mathbf{k} \cdot \mathbf{T}}{\mathbf{e}} \cdot \ln \left(\frac{\mathbf{p}}{\mathbf{N}_{\mathbf{V}}} \right)$$

Im thermischen Gleichgewicht ist BGN in p- und n-Berechnung schon berücksichtigt und somit auch in $E_{C}-E_{F}$ und $E_{F}-E_{V}$. Die zweite Gleichung gilt immer.

P außer
$$I \cdot \sum_{i=2}^{NMAX} (E \cdot dx)$$
 und Pot. Sprünge am Rand: stationär! A = Querschnitt

$$\frac{P}{A} = \sum_{i=1}^{NMAX} \begin{bmatrix} E_{G_{i}}(j_{n_{i+1}} - j_{n_{i}}) \end{bmatrix} + \sum_{i=2}^{NMAX} \begin{bmatrix} j_{p_{i}}(\Delta E_{V_{i}} - \Delta E_{V_{i-1}}) \end{bmatrix} - \sum_{i=2}^{NMAX} \begin{bmatrix} j_{n_{i}}(\Delta E_{C_{i}} - \Delta E_{C_{i-1}}) \end{bmatrix}$$
Rekomb.
BGN E_V
BGN E_C
GI.3

 $\underset{\text{mit}}{\text{E}_{\text{G}_{i}}} = \text{E}_{\text{G0}} - \Delta \text{E}_{\text{V}_{i}} - \Delta \text{E}_{\text{C}_{i}} \text{ folgt für den Rekomb. Anteil an P:}$

$$E_{GO} \cdot \left(j_{n_{NMAX+1}} - j_{n_{1}}\right) - \sum_{i=1}^{NMAX} \left[\Delta E_{V_{i}} \cdot \left(j_{n_{i+1}} - j_{n_{i}}\right)\right] - \sum_{i=1}^{NMAX} \left[\Delta E_{C_{i}} \cdot \left(j_{n_{i+1}} - j_{n_{i}}\right)\right] GI. 4$$

GI. 4 in GI. 3 eingesetzt liefert mit $j = j_{n_i} + j_{p_i}$

$$\begin{split} \frac{P}{A} &= E_{G0} \cdot \left(j_{n_{NMAX+1}} - j_{n_{1}} \right) + j \cdot \sum_{i=2}^{NMAX} \left(\Delta E_{V_{i}} - \Delta E_{V_{i-1}} \right) \dots \\ &+ \sum_{i=1}^{NMAX} \left(\Delta E_{V_{i}} \cdot j_{n_{i}} \right) - \sum_{i=1}^{NMAX} \left(\Delta E_{V_{i}} \cdot j_{n_{i+1}} \right) \dots \\ &+ \sum_{i=1}^{NMAX} \left(\Delta E_{C_{i}} \cdot j_{n_{i}} \right) - \sum_{i=1}^{NMAX} \left(\Delta E_{C_{i}} \cdot j_{n_{i+1}} \right) \dots \\ &+ \sum_{i=1}^{NMAX} \left(\Delta E_{C_{i-1}} j_{n_{i}} \right) - \sum_{i=2}^{NMAX} \left(j_{n_{i}} \cdot \Delta E_{C_{i}} \right) \dots \\ &+ \sum_{i=2}^{NMAX} \left(j_{n_{i}} \cdot \Delta E_{C_{i-1}} \right) - \sum_{i=2}^{NMAX} \left(j_{n_{i}} \cdot \Delta E_{V_{i}} \right) \dots \\ &+ \sum_{i=2}^{NMAX} \left(j_{n_{i}} \cdot \Delta E_{V_{i-1}} \right) - \sum_{i=2}^{NMAX} \left(j_{n_{i}} \cdot \Delta E_{V_{i}} \right) \dots \end{split}$$

$$\sum_{i=1}^{NMAX-1} \left(j_{n_{i+1}} \cdot \Delta E_{C_i} \right) = \sum_{i=2}^{NMAX} \left(j_{n_i} \cdot \Delta E_{C_{i-1}} \right) \qquad \sum_{i=1}^{NMAX-1} \left(j_{n_{i+1}} \cdot \Delta E_{V_i} \right) = \sum_{i=2}^{NMAX} \left(j_{n_i} \cdot \Delta E_{V_{i-1}} \right)$$

$$\frac{\mathbf{P}}{\mathbf{A}} = \mathbf{E}_{\mathbf{G0}} \cdot \left(\mathbf{j}_{\mathbf{n}}_{\mathrm{NMAX+1}} - \mathbf{j}_{\mathbf{n}}_{1} \right) + \Delta \mathbf{E}_{\mathbf{C}_{1}} \cdot \mathbf{j}_{\mathbf{n}}_{1} + \Delta \mathbf{E}_{\mathbf{V}_{1}} \cdot \mathbf{j}_{\mathbf{n}}_{1} \cdots \\ + \mathbf{j} \cdot \left(\Delta \mathbf{E}_{\mathbf{V}}_{\mathrm{NMAX}} - \Delta \mathbf{E}_{\mathbf{V}_{1}} \right) - \Delta \mathbf{E}_{\mathbf{C}}_{\mathrm{NMAX}} \cdot \mathbf{j}_{\mathbf{n}}_{\mathrm{NMAX+1}} - \Delta \mathbf{E}_{\mathbf{V}}_{\mathrm{NMAX}} \cdot \mathbf{j}_{\mathbf{n}}_{\mathrm{NMAX+1}}$$

$$\frac{P}{A} = -j_{n_{1}} \cdot \left(E_{G0} - \Delta E_{C_{1}} - \Delta E_{V_{1}} \right) + j_{n_{NMAX+1}} \cdot \left(E_{G0} - \Delta E_{C_{NMAX}} - \Delta E_{V_{NMAX}} \right) + j \cdot \left(\Delta E_{V_{NMAX}} - \Delta E_{V_{1}} \right)$$
GI. 5

Die Verluste am Met. Si. Übergang sind:

links:
$$-j_{p_1} \cdot (E_F - E_V)_1 - j_{n_1} \cdot (E_C - E_F)_1$$
 Gl. 6
rechts: $-j_{p_{NMAX+1}} \cdot (E_F - E_V)_{NMAX} - j_{n_{NMAX+1}} \cdot (E_C - E_F)_{NMAX}$

Die Gesamtverluste aus Gl. 5 und Gl. 6 außer $I = 2^{NMAX} \sum_{i=2}^{NMAX} (E \cdot dx)$ sind:

$$\frac{P}{A} = -j_{n_{1}} \cdot \left[\left(E_{G0} - \Delta E_{C_{1}} - \Delta E_{V_{1}} \right) - \left(E_{C} - E_{F} \right)_{1} \right] - j_{p_{1}} \cdot \left(E_{F} - E_{V} \right)_{1} + j \cdot \left(\Delta E_{V_{NMAX}} - \Delta E_{V_{1}} \right) \dots + j_{n_{NMAX+1}} \cdot \left[\left(E_{G0} - \Delta E_{C_{NMAX}} - \Delta E_{V_{NMAX}} \right) - \left(E_{C} - E_{F} \right)_{NMAX} \right] - j_{p_{NMAX+1}} \cdot \left(E_{F} - E_{V} \right)_{NMAX} + j \cdot \left(E_{F} - E_{V} \right)_{NMAX} + j$$

Randbedingungen: $j_{n_1} = j_{p_{NMAX+1}} = 0$ $j_{p_1} = j_{n_{NMAX+1}} = j$

$$= \frac{P}{A} = j \cdot \left[-\left(E_F - E_V\right)_1 + \left(E_{G0} - \Delta E_{C_{NMAX}} - \Delta E_{V_{NMAX}}\right) - \left(E_C - E_F\right)_{NMAX} + \left(\Delta E_{V_{NMAX}} - \Delta E_{V_1}\right) \right]$$

$$\begin{split} \mathbf{E}_{\text{G0}} &- \Delta \mathbf{E}_{\text{C}_{\text{NMAX}}} - \Delta \mathbf{E}_{\text{V}_{\text{NMAX}}} = \mathbf{E}_{\text{G}_{i_{\text{max}}}} \\ &- (\mathbf{E}_{\text{F}} - \mathbf{E}_{\text{V}})_{1} + \left(\mathbf{E}_{\text{G0}} - \Delta \mathbf{E}_{\text{C}_{\text{NMAX}}} - \Delta \mathbf{E}_{\text{V}_{\text{NMAX}}}\right) - \left(\mathbf{E}_{\text{C}} - \mathbf{E}_{\text{F}}\right)_{\text{NMAX}} + \left(\Delta \mathbf{E}_{\text{V}_{\text{NMAX}}} - \Delta \mathbf{E}_{\text{V}_{1}}\right) \end{split}$$

muss gleich sein an $\mathrm{U}_{\mathrm{dif}}$

$$=> U_{dif} = \left(\Delta E_{V_{NMAX}} - \Delta E_{V_1}\right) - \left(E_F - E_V\right)_1 + \left(E_F - E_V\right)_{NMAX \text{ GI. 7}}$$

 $\left(\mathsf{E}_{F}-\mathsf{E}_{V}\right)_{1} = \mathsf{E}_{G0} - \Delta\mathsf{E}_{C_{1}} - \Delta\mathsf{E}_{V_{1}} - \left(\mathsf{E}_{C}-\mathsf{E}_{F}\right)_{1} \text{folgt:}$

$$\frac{P}{A} = j \cdot \left[\Delta E_{C_1} + (E_C - E_F)_1 - \Delta E_{C_{NMAX}} - (E_C - E_F)_{NMAX} \right]$$
$$= U_{dif} = \left(\Delta E_{C_1} - \Delta E_{C_{NMAX}} \right) + \left(E_C - E_F \right)_1 - \left(E_C - E_F \right)_{NMAX} GI. 8$$

$$U_{dif} = -\sum_{i=2}^{NMAX} (E \cdot dx) = -\sum_{i=2}^{NMAX} \left(\frac{k \cdot T}{e} \cdot \ln \left(\frac{n_{i-1}}{n_i} \right) - \Delta E_{n_i} \cdot dx_i \right) = -\sum_{i=2}^{NMAX} \left(\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_i}{p_{i-1}} \right) + \Delta E_{p_i} \cdot dx_i \right)$$
Gl. 9

wobei T = Mittelwert von T

$$-\sum_{i=2}^{NMAX} \left(\frac{\mathbf{k} \cdot \mathbf{T}}{\mathbf{e}} \cdot \ln \left(\frac{\mathbf{n}_{i-1}}{\mathbf{n}_i} \right) \right) = -\frac{\mathbf{k} \cdot \mathbf{T}}{\mathbf{e}} \cdot \ln \left(\frac{\mathbf{n}_1}{\mathbf{n}_{NMAX}} \right) - \sum_{i=2}^{NMAX} \left(\frac{\mathbf{k} \cdot \mathbf{T}}{\mathbf{e}} \cdot \ln \left(\frac{\mathbf{p}_i}{\mathbf{p}_{i-1}} \right) + \Delta \mathbf{E}_{\mathbf{p}_i} \cdot \mathbf{d}_{\mathbf{x}_i} \right) = -\frac{\mathbf{k} \cdot \mathbf{T}}{\mathbf{e}} \cdot \ln \left(\frac{\mathbf{p}_{NMAX}}{\mathbf{p}_1} \right)$$
GI. 10

entspricht bei konst. Temperatur:

$$\left(E_{C}-E_{F}\right)_{1}-\left(E_{C}-E_{F}\right)_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{n_{1}}{n_{NMAX}}\right) \quad \left(E_{F}-E_{V}\right)_{1}-\left(E_{F}-E_{V}\right)_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{1} - \left(E_{F}-E_{V}\right)_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{1} - \left(E_{F}-E_{V}\right)_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{1} - \left(E_{F}-E_{V}\right)_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{1} - \left(E_{F}-E_{V}\right)_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k \cdot T}{e} \cdot \ln \left(\frac{p_{NMAX}}{p_{1}}\right) \quad (E_{F}-E_{V})_{NMAX} = -\frac{k$$

Aus Gl. 7, Gl. 9 und Gl. 11 folgt:

$$\mathbf{U}_{dif} = \left(\Delta \mathbf{E}_{\mathbf{V}_{NMAX}} - \Delta \mathbf{E}_{\mathbf{V}_{1}}\right) - \frac{\mathbf{k} \cdot \mathbf{T}}{\mathbf{e}} \cdot \ln \left(\frac{\mathbf{p}_{NMAX}}{\mathbf{p}_{1}}\right) = -\frac{\mathbf{k} \cdot \mathbf{T}}{\mathbf{e}} \cdot \ln \left(\frac{\mathbf{p}_{NMAX}}{\mathbf{p}_{1}}\right) - \sum_{i=2}^{NMAX} \left(\Delta \mathbf{E}_{\mathbf{p}_{i}} \cdot \mathbf{d}\mathbf{x}_{i}\right)$$

$$\sum_{i=2}^{\text{NMAX}} \left(\Delta E_{p_i} \cdot dx_i \right) = \Delta E_{V_1} - \Delta E_{V_{\text{NMAX}}}$$
==> i = 2 Temp. konst.! Gl. 12

Aus Gl. 8, Gl. 9 und Gl. 10 folgt:

$$\mathbf{U}_{dif} = \left(\Delta \mathbf{E}_{\mathbf{C}_{1}} - \Delta \mathbf{E}_{\mathbf{C}_{NMAX}}\right) - \frac{\mathbf{k} \cdot \mathbf{T}}{\mathbf{e}} \cdot \ln\left(\frac{\mathbf{n}_{1}}{\mathbf{n}_{NMAX}}\right) = -\frac{\mathbf{k} \cdot \mathbf{T}}{\mathbf{e}} \cdot \ln\left(\frac{\mathbf{n}_{1}}{\mathbf{n}_{NMAX}}\right) + \sum_{i=2}^{NMAX} \left(\Delta \mathbf{E}_{\mathbf{n}_{i}} \cdot \mathbf{d}\mathbf{x}_{i}\right)$$

$$\sum_{i=2}^{\text{NMAX}} \left(\Delta E_{n_i} \cdot dx_i \right) = \Delta E_{C_1} - \Delta E_{C_{\text{NMAX}}}$$
==> i = 2 Temp. konst.! GI. 13

Folgende Bedingung wurde für ${}^{\Delta E_{n_i} + \Delta E_{p_j}}$ abgeleitet:

$$\left(\Delta E_{n_{i}} + \Delta E_{p_{i}}\right) \cdot dx_{i} = T \cdot \left(\frac{\Delta E_{C_{i-1}} + \Delta E_{C_{i}}}{T_{i-1}} - \frac{\Delta E_{C_{i}} + \Delta E_{V_{i}}}{T_{i}}\right)_{GI. 14 \text{ T = Mittelwert von T}}$$

Aus Gl. 12, Gl. 13 und Gl. 14 folgt:

$$\Delta E_{n_i} = \frac{T}{dx_i} \left(\frac{\Delta E_{C_{i-1}} - \Delta E_{C_i}}{T_i} \right) \quad \Delta E_{p_i} = \frac{T}{dx_i} \left(\frac{\Delta E_{V_{i-1}} - \Delta E_{V_i}}{T_i} \right)$$

und mit konstanter Temperatur:

$$\Delta E_{n_{i}} = \frac{\Delta E_{C_{i-1}} - \Delta E_{C_{i}}}{\frac{dx_{i}}{dx_{i}}} \quad \Delta E_{p_{i}} = \frac{\Delta E_{V_{i-1}} - \Delta E_{V_{i}}}{\frac{dx_{i}}{dx_{i}}}$$
Gl. 15
$$\Delta E_{C} > 0! \qquad \Delta E_{V} > 0!$$